- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:World Scientific Pub Co Pte Lt Funded by:UKRI | Computer-aided design of ...UKRI| Computer-aided design of zinc phosphide heterojunctions for efficient solar energy conversionSachin Thawarkar; Sachin R. Rondiya; Prem Jyoti Singh Rana; Ramanuj Narayan; Nelson Y. Dzade; Surya Prakash Singh;Herein, we report a novel layered lead bromide, (CH3CH[Formula: see text]N[Formula: see text]Br[Formula: see text](CH[Formula: see text]NH[Formula: see text]PbBr3, where bulky organic cations, (CH3CH[Formula: see text]N[Formula: see text]Br[Formula: see text](CH[Formula: see text]NH[Formula: see text], amino-ethyl triethyl ammonium [aetriea] were not only incorporated between the inorganic layers but also sandwiched within the inorganic [PbBr6][Formula: see text] octahedral layered structure. The UV-Visible, photoluminescence spectroscopy (PL), X-ray diffraction (XRD) and a field-emission scanning electron microscope (FE-SEM) result show that the new perovskitoid has a microrod shape with an estimated bandgap of [Formula: see text]3.05 eV. The structural and optoelectronic properties of the [aetriea]PbBr3perovskitoid were further corroborated by first-principles density functional theory (DFT) calculations. Thermogravimetric analysis (TGA) data show good stability of the [aetriea]PbBr3perovskitoid. Time-resolved photoluminescence (TRPL) decays from new [aetriea]PbBr3perovskitoid showing 6 ns average lifetime. These results suggest that doubly charged cation hybrid perovskite materials are potential candidates for optoelectronic applications.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s1793604721500089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s1793604721500089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:World Scientific Pub Co Pte Lt Funded by:UKRI | Computer-aided design of ...UKRI| Computer-aided design of zinc phosphide heterojunctions for efficient solar energy conversionSachin Thawarkar; Sachin R. Rondiya; Prem Jyoti Singh Rana; Ramanuj Narayan; Nelson Y. Dzade; Surya Prakash Singh;Herein, we report a novel layered lead bromide, (CH3CH[Formula: see text]N[Formula: see text]Br[Formula: see text](CH[Formula: see text]NH[Formula: see text]PbBr3, where bulky organic cations, (CH3CH[Formula: see text]N[Formula: see text]Br[Formula: see text](CH[Formula: see text]NH[Formula: see text], amino-ethyl triethyl ammonium [aetriea] were not only incorporated between the inorganic layers but also sandwiched within the inorganic [PbBr6][Formula: see text] octahedral layered structure. The UV-Visible, photoluminescence spectroscopy (PL), X-ray diffraction (XRD) and a field-emission scanning electron microscope (FE-SEM) result show that the new perovskitoid has a microrod shape with an estimated bandgap of [Formula: see text]3.05 eV. The structural and optoelectronic properties of the [aetriea]PbBr3perovskitoid were further corroborated by first-principles density functional theory (DFT) calculations. Thermogravimetric analysis (TGA) data show good stability of the [aetriea]PbBr3perovskitoid. Time-resolved photoluminescence (TRPL) decays from new [aetriea]PbBr3perovskitoid showing 6 ns average lifetime. These results suggest that doubly charged cation hybrid perovskite materials are potential candidates for optoelectronic applications.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s1793604721500089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s1793604721500089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu