- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:American Society for Microbiology Anne Kakouridis; Evan P. Starr; Mary K. Firestone; Nhu H. Nguyen; Erin E. Nuccio; Mengting Maggie Yuan; Jennifer Pett-Ridge; Jizhong Zhou; Jizhong Zhou; Shengjing Shi;Soils near living and decomposing roots form distinct niches that promote microorganisms with distinctive environmental preferences and interactions. Yet few studies have assessed the community-level cooccurrence of bacteria and fungi in these soil niches as plant roots grow and senesce.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/07n8f4knData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.03509-20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/07n8f4knData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.03509-20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:Wiley Eric W. Slessarev; Erin E. Nuccio; Karis J. McFarlane; Christina E. Ramon; Malay Saha; Mary K. Firestone; Jennifer Pett‐Ridge;AbstractPerennial bioenergy crops have been shown to increase soil organic carbon (SOC) stocks, potentially offsetting anthropogenic C emissions. The effects of perennial bioenergy crops on SOC are typically assessed at shallow depths (<30 cm), but the deep root systems of these crops may also have substantial effects on SOC stocks at greater depths. We hypothesized that deep (>30 cm) SOC stocks would be greater under bioenergy crops relative to stocks under shallow‐rooted conventional crop cover. To test this, we sampled soils to between 1‐ and 3‐m depth at three sites in Oklahoma with 10‐ to 20‐year‐old switchgrass (Panicum virgatum) stands, and collected paired samples from nearby fields cultivated with shallow rooted annual crops. We measured root biomass, total organic C,14C,13C, and other soil properties in three replicate soil cores in each field and used a mixing model to estimate the proportion of recently fixed C under switchgrass based on14C. The subsoil C stock under switchgrass (defined over 500–1500 kg/m2equivalent soil mass, approximately 30–100 cm depth) exceeded the subsoil stock in neighboring fields by 1.5 kg C/m2at a sandy loam site, 0.6 kg C/m2at a site with loam soils, and showed no significant difference at a third site with clay soils. Using the mixing model, we estimated that additional SOC introduced after switchgrass cultivation comprised 31% of the subsoil C stock at the sandy loam site, 22% at the loam site, and 0% at the clay site. These results suggest that switchgrass can contribute significantly to subsoil organic C—but also indicated that this effect varies across sites. Our analysis shows that agricultural strategies that emphasize deep‐rooted grass cultivars can increase soil C relative to conventional crops while expanding energy biomass production on marginal lands.
GCB Bioenergy arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Noah W. Sokol; Eric Slessarev; Gianna L. Marschmann; Alexa Nicolas; Steven J. Blazewicz; Eoin L. Brodie; Mary K. Firestone; Megan M. Foley; Rachel Hestrin; Bruce A. Hungate; Benjamin J. Koch; Bram W. Stone; Matthew B. Sullivan; Olivier Zablocki; Gareth Trubl; Karis McFarlane; Rhona Stuart; Erin Nuccio; Peter Weber; Yongqin Jiao; Mavrik Zavarin; Jeffrey Kimbrel; Keith Morrison; Dinesh Adhikari; Amrita Bhattacharaya; Peter Nico; Jinyun Tang; Nicole Didonato; Ljiljana Paša-Tolić; Alex Greenlon; Ella T. Sieradzki; Paul Dijkstra; Egbert Schwartz; Rohan Sachdeva; Jillian Banfield; Jennifer Pett-Ridge;pmid: 35228712
Soil microorganisms shape global element cycles in life and death. Living soil microorganisms are a major engine of terrestrial biogeochemistry, driving the turnover of soil organic matter - Earth's largest terrestrial carbon pool and the primary source of plant nutrients. Their metabolic functions are influenced by ecological interactions with other soil microbial populations, soil fauna and plants, and the surrounding soil environment. Remnants of dead microbial cells serve as fuel for these biogeochemical engines because their chemical constituents persist as soil organic matter. This non-living microbial biomass accretes over time in soil, forming one of the largest pools of organic matter on the planet. In this Review, we discuss how the biogeochemical cycling of organic matter depends on both living and dead soil microorganisms, their functional traits, and their interactions with the soil matrix and other organisms. With recent omics advances, many of the traits that frame microbial population dynamics and their ecophysiological adaptations can be deciphered directly from assembled genomes or patterns of gene or protein expression. Thus, it is now possible to leverage a trait-based understanding of microbial life and death within improved biogeochemical models and to better predict ecosystem functioning under new climate regimes.
Nature Reviews Micro... arrow_drop_down Nature Reviews MicrobiologyArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-022-00695-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu568 citations 568 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Nature Reviews Micro... arrow_drop_down Nature Reviews MicrobiologyArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-022-00695-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Springer Science and Business Media LLC Ember M. Morrissey; Steven J. Blazewicz; Bram W. G. Stone; Paul Dijkstra; Michaela Hayer; Kirsten S. Hofmockel; Kirsten S. Hofmockel; Junhui Li; Egbert Schwartz; Bruce A. Hungate; Jennifer Pett-Ridge; Jennifer Pett-Ridge; Rebecca L. Mau; Benjamin J. Koch; Xiao Jun Allen Liu;AbstractNutrient amendment diminished bacterial functional diversity, consolidating carbon flow through fewer bacterial taxa. Here, we show strong differences in the bacterial taxa responsible for respiration from four ecosystems, indicating the potential for taxon-specific control over soil carbon cycling. Trends in functional diversity, defined as the richness of bacteria contributing to carbon flux and their equitability of carbon use, paralleled trends in taxonomic diversity although functional diversity was lower overall. Among genera common to all ecosystems, Bradyrhizobium, the Acidobacteria genus RB41, and Streptomyces together composed 45–57% of carbon flow through bacterial productivity and respiration. Bacteria that utilized the most carbon amendment (glucose) were also those that utilized the most native soil carbon, suggesting that the behavior of key soil taxa may influence carbon balance. Mapping carbon flow through different microbial taxa as demonstrated here is crucial in developing taxon-sensitive soil carbon models that may reduce the uncertainty in climate change projections.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23676-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23676-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | Long-Term Ecological Rese...NSF| Long-Term Ecological Research at the H.J. Andrews Experimental Forest (LTER6)Jennifer Pett-Ridge; Marco Keiluweit; Marco Keiluweit; Jingdong Mao; Mark E. Harmon; Markus Kleber; Peter S. Nico;SignificanceThe rate-controlling mechanisms of litter decomposition are of fundamental importance for ecosystem nutrient cycling, productivity, and net carbon (C) balance. Current C cycling models rely primarily on climatic factors and lignin content as the main predictors of litter decomposition rates. Here, we show how the ability of the integrated plant–soil system to promote active redox cycling of manganese (Mn) regulates litter decomposition. Our work suggests that incorporating the coupling of litter decomposition and other elemental cycles, such as the Mn cycle, into conceptual and numerical models may significantly improve our mechanistic understanding and predictions of C cycling in terrestrial ecosystems.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4kt6d5gtData sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1508945112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4kt6d5gtData sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1508945112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2019 United StatesPublisher:Cold Spring Harbor Laboratory Ulas Karaoz; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Susannah G. Tringe; Mary K. Firestone; Mary K. Firestone; Rex R. Malmstrom; Evan P. Starr; Eoin L. Brodie; Eoin L. Brodie; Jillian F. Banfield; Jillian F. Banfield; Jennifer Pett-Ridge; Tanja Woyke; Erin E. Nuccio;AbstractThe rhizosphere is a hotspot for microbial C transformations, and the origin of root polysaccharides and polymeric carbohydrates that are important precursors to soil organic matter. However, the ecological mechanisms that underpin rhizosphere carbohydrate depolymerization are poorly understood. UsingAvena fatua, a common annual grass, we analyzed time-resolved metatranscriptomes to compare microbial function in rhizosphere, detritusphere, and combined rhizosphere-detritusphere habitats. Population transcripts were binned with a unique reference database generated from soil isolate and single amplified genomes, metagenomes, and stable isotope probing metagenomes. While soil habitat significantly affected both community composition and overall gene expression, succession of microbial functions occurred at a faster time scale than compositional changes. Using hierarchical clustering of upregulated decomposition gene expression, we identified four distinct microbial guilds populated by taxa whose functional succession patterns suggest specialization for substrates provided by fresh growing roots, decaying root detritus, the combination of live and decaying root biomass, or aging root material. Carbohydrate depolymerization genes were consistently upregulated in the rhizosphere, and both taxonomic and functional diversity were high in the combined rhizosphere-detritusphere—suggesting coexistence of rhizosphere guilds is facilitated by niche differentiation. Metatranscriptome-defined guilds provide a framework to model rhizosphere succession and its consequences for soil carbon cycling.
bioRxiv arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8vc6d014Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/611863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 171 citations 171 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert bioRxiv arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8vc6d014Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/611863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley Mary K. Firestone; Mary K. Firestone; Katerina Y. Estera; Erin E. Nuccio; Erin E. Nuccio; Eoin L. Brodie; Eoin L. Brodie; Perry de Valpine; James Anderson-Furgeson; Jennifer Pett-Ridge;doi: 10.1890/15-0882.1
pmid: 27349106
AbstractThe interface between roots and soil, known as the rhizosphere, is a dynamic habitat in the soil ecosystem. Unraveling the factors that control rhizosphere community assembly is a key starting point for understanding the diversity of plant‐microbial interactions that occur in soil. The goals of this study were to determine how environmental factors shape rhizosphere microbial communities, such as local soil characteristics and the regional climate, and to determine the relative influence of the rhizosphere on microbial community assembly compared to the pressures imposed by the local and regional environment. We identified the bacteria present in the soil immediately adjacent to the roots of wild oat (Avena spp.) in three California grasslands using deep Illumina 16S sequencing. Rhizosphere communities were more similar to each other than to the surrounding soil communities from which they were derived, despite the fact that the grasslands studied were separated by hundreds of kilometers. The rhizosphere was the dominant factor structuring bacterial community composition (38% variance explained), and was comparable in magnitude to the combined local and regional effects (22% and 21%, respectively). Rhizosphere communities were most influenced by factors related to the regional climate (soil moisture and temperature), while background soil communities were more influenced by soil characteristics (pH, CEC, exchangeable cations, clay content). The Avena core microbiome was strongly phylogenetically clustered according to the metrics NRI and NTI, which indicates that selective processes likely shaped these communities. Furthermore, 17% of these taxa were not detectable in the background soil, even with a robust sequencing depth of approximately 70,000 sequences per sample. These results support the hypothesis that roots select less abundant or possibly rare populations in the soil microbial community, which appear to be lineages of bacteria that have made a physiological tradeoff for rhizosphere competence at the expense of their competitiveness in non‐rhizosphere soil.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/3824k1swData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0882.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/3824k1swData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0882.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Wiley Authors: Marshall D. McDaniel; Jeffrey A. Bird; Jennifer Pett‐Ridge; Erika Marin‐Spiotta; +2 AuthorsMarshall D. McDaniel; Jeffrey A. Bird; Jennifer Pett‐Ridge; Erika Marin‐Spiotta; Tom M. Schmidt; A. Stuart Grandy;AbstractManaging soils to retain new plant inputs is key to moving toward a sustainable and regenerative agriculture. Management practices, like diversifying and perennializing agroecosystems, may affect the decomposer organisms that regulate how new residue is converted to persistent soil organic matter. Here we tested whether 12 years of diversifying/perennializing plants in agroecosystems through extended rotations or grassland restoration would decrease losses of new plant residue inputs and, thus, increase retention of carbon (C) and nitrogen (N) in soil. We tracked dual‐labeled (13C and15N), isotopically enriched wheat (Triticum aestivum) residue in situ for 2 years as it decomposed in three agroecosystems: maize–soybean (CS) rotation, maize–soybean–wheat plus red clover and cereal rye cover crops (CSW2), and spring fallow management with regeneration of natural grassland species (seven to 10 species; SF). We measured losses of wheat residue (Cwheatand Nwheat) in leached soil solution and greenhouse gas fluxes, as well as how much was recovered in microbial biomass and bulk soil at 5‐cm increments down to 20 cm. CSW2 and SF both had unique, significant effects on residue decomposition and retention dynamics that were clear only when using nuanced metrics that able to tease apart subtle differences. For example, SF retained a greater portion of Cwheatin 0–5 cm surface soils (155%,p = 0.035) and narrowed the Cwheatto Nwheatratio (p < 0.030) compared to CS. CSW2 increased an index of carbon‐retention efficiency, Cwheatretained in the mesocosm divided by total measured, from 0.18 to 0.27 (49%,p = 0.001), compared to CS. Overall, we found that diversifying and extending the duration of living plants in agroecosystems can lead to greater retention of new residue inputs in subtle ways that require further investigation to fully understand.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2022License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1650Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2022License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1650Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Wiley Funded by:NSF | LTREB renewal: Progressi...NSF| LTREB renewal: Progressive Responses to Environmental Change Across Multiple EcosystemsEmber M. Morrissey; Egbert Schwartz; Steven J. Blazewicz; Paul Dijkstra; Rachel L. Rubin; Michaela Hayer; Rebecca L. Mau; Bruce A. Hungate; Jane C. Marks; Michelle C. Mack; Alicia M. Purcell; Natasja van Gestel; Benjamin J. Koch; Jennifer Pett-Ridge; Jennifer Pett-Ridge;AbstractThe carbon stored in soil exceeds that of plant biomass and atmospheric carbon and its stability can impact global climate. Growth of decomposer microorganisms mediates both the accrual and loss of soil carbon. Growth is sensitive to temperature and given the vast biological diversity of soil microorganisms, the response of decomposer growth rates to warming may be strongly idiosyncratic, varying among taxa, making ecosystem predictions difficult. Here, we show that 15 years of warming by transplanting plant–soil mesocosms down in elevation, strongly reduced the growth rates of soil microorganisms, measured in the field using undisturbed soil. The magnitude of the response to warming varied among microbial taxa. However, the direction of the response—reduced growth—was universal and warming explained twofold more variation than did the sum of taxonomic identity and its interaction with warming. For this ecosystem, most of the growth responses to warming could be explained without taxon‐specific information, suggesting that in some cases microbial responses measured in aggregate may be adequate for climate modeling. Long‐term experimental warming also reduced soil carbon content, likely a consequence of a warming‐induced increase in decomposition, as warming‐induced changes in plant productivity were negligible. The loss of soil carbon and decreased microbial biomass with warming may explain the reduced growth of the microbial community, more than the direct effects of temperature on growth. These findings show that direct and indirect effects of long‐term warming can reduce growth rates of soil microbes, which may have important feedbacks to global warming.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Bruce A. Hungate; Matthew E. Craig; Matthew E. Craig; Sara Vicca; Richard P. Phillips; Benjamin D. Stocker; Benjamin D. Stocker; K. Van Sundert; Benjamin N. Sulman; R. D. Evans; Peter B. Reich; K. J. van Groenigen; J. Rosende; César Terrer; César Terrer; Jennifer Pett-Ridge; J. Fisher; J. Fisher; Trevor F. Keenan; Haicheng Zhang; Elise Pendall; Robert B. Jackson; Yolima Carrillo; Adam F. A. Pellegrini; Adam F. A. Pellegrini;Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2) experiments4-6, SOC has been observed to increase, remain unchanged or even decline7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO2, SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests (0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised.
Nature arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03306-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 389 citations 389 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03306-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:American Society for Microbiology Anne Kakouridis; Evan P. Starr; Mary K. Firestone; Nhu H. Nguyen; Erin E. Nuccio; Mengting Maggie Yuan; Jennifer Pett-Ridge; Jizhong Zhou; Jizhong Zhou; Shengjing Shi;Soils near living and decomposing roots form distinct niches that promote microorganisms with distinctive environmental preferences and interactions. Yet few studies have assessed the community-level cooccurrence of bacteria and fungi in these soil niches as plant roots grow and senesce.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/07n8f4knData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.03509-20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/07n8f4knData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mbio.03509-20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:Wiley Eric W. Slessarev; Erin E. Nuccio; Karis J. McFarlane; Christina E. Ramon; Malay Saha; Mary K. Firestone; Jennifer Pett‐Ridge;AbstractPerennial bioenergy crops have been shown to increase soil organic carbon (SOC) stocks, potentially offsetting anthropogenic C emissions. The effects of perennial bioenergy crops on SOC are typically assessed at shallow depths (<30 cm), but the deep root systems of these crops may also have substantial effects on SOC stocks at greater depths. We hypothesized that deep (>30 cm) SOC stocks would be greater under bioenergy crops relative to stocks under shallow‐rooted conventional crop cover. To test this, we sampled soils to between 1‐ and 3‐m depth at three sites in Oklahoma with 10‐ to 20‐year‐old switchgrass (Panicum virgatum) stands, and collected paired samples from nearby fields cultivated with shallow rooted annual crops. We measured root biomass, total organic C,14C,13C, and other soil properties in three replicate soil cores in each field and used a mixing model to estimate the proportion of recently fixed C under switchgrass based on14C. The subsoil C stock under switchgrass (defined over 500–1500 kg/m2equivalent soil mass, approximately 30–100 cm depth) exceeded the subsoil stock in neighboring fields by 1.5 kg C/m2at a sandy loam site, 0.6 kg C/m2at a site with loam soils, and showed no significant difference at a third site with clay soils. Using the mixing model, we estimated that additional SOC introduced after switchgrass cultivation comprised 31% of the subsoil C stock at the sandy loam site, 22% at the loam site, and 0% at the clay site. These results suggest that switchgrass can contribute significantly to subsoil organic C—but also indicated that this effect varies across sites. Our analysis shows that agricultural strategies that emphasize deep‐rooted grass cultivars can increase soil C relative to conventional crops while expanding energy biomass production on marginal lands.
GCB Bioenergy arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Noah W. Sokol; Eric Slessarev; Gianna L. Marschmann; Alexa Nicolas; Steven J. Blazewicz; Eoin L. Brodie; Mary K. Firestone; Megan M. Foley; Rachel Hestrin; Bruce A. Hungate; Benjamin J. Koch; Bram W. Stone; Matthew B. Sullivan; Olivier Zablocki; Gareth Trubl; Karis McFarlane; Rhona Stuart; Erin Nuccio; Peter Weber; Yongqin Jiao; Mavrik Zavarin; Jeffrey Kimbrel; Keith Morrison; Dinesh Adhikari; Amrita Bhattacharaya; Peter Nico; Jinyun Tang; Nicole Didonato; Ljiljana Paša-Tolić; Alex Greenlon; Ella T. Sieradzki; Paul Dijkstra; Egbert Schwartz; Rohan Sachdeva; Jillian Banfield; Jennifer Pett-Ridge;pmid: 35228712
Soil microorganisms shape global element cycles in life and death. Living soil microorganisms are a major engine of terrestrial biogeochemistry, driving the turnover of soil organic matter - Earth's largest terrestrial carbon pool and the primary source of plant nutrients. Their metabolic functions are influenced by ecological interactions with other soil microbial populations, soil fauna and plants, and the surrounding soil environment. Remnants of dead microbial cells serve as fuel for these biogeochemical engines because their chemical constituents persist as soil organic matter. This non-living microbial biomass accretes over time in soil, forming one of the largest pools of organic matter on the planet. In this Review, we discuss how the biogeochemical cycling of organic matter depends on both living and dead soil microorganisms, their functional traits, and their interactions with the soil matrix and other organisms. With recent omics advances, many of the traits that frame microbial population dynamics and their ecophysiological adaptations can be deciphered directly from assembled genomes or patterns of gene or protein expression. Thus, it is now possible to leverage a trait-based understanding of microbial life and death within improved biogeochemical models and to better predict ecosystem functioning under new climate regimes.
Nature Reviews Micro... arrow_drop_down Nature Reviews MicrobiologyArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-022-00695-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu568 citations 568 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Nature Reviews Micro... arrow_drop_down Nature Reviews MicrobiologyArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-022-00695-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Springer Science and Business Media LLC Ember M. Morrissey; Steven J. Blazewicz; Bram W. G. Stone; Paul Dijkstra; Michaela Hayer; Kirsten S. Hofmockel; Kirsten S. Hofmockel; Junhui Li; Egbert Schwartz; Bruce A. Hungate; Jennifer Pett-Ridge; Jennifer Pett-Ridge; Rebecca L. Mau; Benjamin J. Koch; Xiao Jun Allen Liu;AbstractNutrient amendment diminished bacterial functional diversity, consolidating carbon flow through fewer bacterial taxa. Here, we show strong differences in the bacterial taxa responsible for respiration from four ecosystems, indicating the potential for taxon-specific control over soil carbon cycling. Trends in functional diversity, defined as the richness of bacteria contributing to carbon flux and their equitability of carbon use, paralleled trends in taxonomic diversity although functional diversity was lower overall. Among genera common to all ecosystems, Bradyrhizobium, the Acidobacteria genus RB41, and Streptomyces together composed 45–57% of carbon flow through bacterial productivity and respiration. Bacteria that utilized the most carbon amendment (glucose) were also those that utilized the most native soil carbon, suggesting that the behavior of key soil taxa may influence carbon balance. Mapping carbon flow through different microbial taxa as demonstrated here is crucial in developing taxon-sensitive soil carbon models that may reduce the uncertainty in climate change projections.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23676-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-23676-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:NSF | Long-Term Ecological Rese...NSF| Long-Term Ecological Research at the H.J. Andrews Experimental Forest (LTER6)Jennifer Pett-Ridge; Marco Keiluweit; Marco Keiluweit; Jingdong Mao; Mark E. Harmon; Markus Kleber; Peter S. Nico;SignificanceThe rate-controlling mechanisms of litter decomposition are of fundamental importance for ecosystem nutrient cycling, productivity, and net carbon (C) balance. Current C cycling models rely primarily on climatic factors and lignin content as the main predictors of litter decomposition rates. Here, we show how the ability of the integrated plant–soil system to promote active redox cycling of manganese (Mn) regulates litter decomposition. Our work suggests that incorporating the coupling of litter decomposition and other elemental cycles, such as the Mn cycle, into conceptual and numerical models may significantly improve our mechanistic understanding and predictions of C cycling in terrestrial ecosystems.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4kt6d5gtData sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1508945112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4kt6d5gtData sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1508945112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2019 United StatesPublisher:Cold Spring Harbor Laboratory Ulas Karaoz; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Susannah G. Tringe; Mary K. Firestone; Mary K. Firestone; Rex R. Malmstrom; Evan P. Starr; Eoin L. Brodie; Eoin L. Brodie; Jillian F. Banfield; Jillian F. Banfield; Jennifer Pett-Ridge; Tanja Woyke; Erin E. Nuccio;AbstractThe rhizosphere is a hotspot for microbial C transformations, and the origin of root polysaccharides and polymeric carbohydrates that are important precursors to soil organic matter. However, the ecological mechanisms that underpin rhizosphere carbohydrate depolymerization are poorly understood. UsingAvena fatua, a common annual grass, we analyzed time-resolved metatranscriptomes to compare microbial function in rhizosphere, detritusphere, and combined rhizosphere-detritusphere habitats. Population transcripts were binned with a unique reference database generated from soil isolate and single amplified genomes, metagenomes, and stable isotope probing metagenomes. While soil habitat significantly affected both community composition and overall gene expression, succession of microbial functions occurred at a faster time scale than compositional changes. Using hierarchical clustering of upregulated decomposition gene expression, we identified four distinct microbial guilds populated by taxa whose functional succession patterns suggest specialization for substrates provided by fresh growing roots, decaying root detritus, the combination of live and decaying root biomass, or aging root material. Carbohydrate depolymerization genes were consistently upregulated in the rhizosphere, and both taxonomic and functional diversity were high in the combined rhizosphere-detritusphere—suggesting coexistence of rhizosphere guilds is facilitated by niche differentiation. Metatranscriptome-defined guilds provide a framework to model rhizosphere succession and its consequences for soil carbon cycling.
bioRxiv arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8vc6d014Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/611863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 171 citations 171 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert bioRxiv arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8vc6d014Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/611863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley Mary K. Firestone; Mary K. Firestone; Katerina Y. Estera; Erin E. Nuccio; Erin E. Nuccio; Eoin L. Brodie; Eoin L. Brodie; Perry de Valpine; James Anderson-Furgeson; Jennifer Pett-Ridge;doi: 10.1890/15-0882.1
pmid: 27349106
AbstractThe interface between roots and soil, known as the rhizosphere, is a dynamic habitat in the soil ecosystem. Unraveling the factors that control rhizosphere community assembly is a key starting point for understanding the diversity of plant‐microbial interactions that occur in soil. The goals of this study were to determine how environmental factors shape rhizosphere microbial communities, such as local soil characteristics and the regional climate, and to determine the relative influence of the rhizosphere on microbial community assembly compared to the pressures imposed by the local and regional environment. We identified the bacteria present in the soil immediately adjacent to the roots of wild oat (Avena spp.) in three California grasslands using deep Illumina 16S sequencing. Rhizosphere communities were more similar to each other than to the surrounding soil communities from which they were derived, despite the fact that the grasslands studied were separated by hundreds of kilometers. The rhizosphere was the dominant factor structuring bacterial community composition (38% variance explained), and was comparable in magnitude to the combined local and regional effects (22% and 21%, respectively). Rhizosphere communities were most influenced by factors related to the regional climate (soil moisture and temperature), while background soil communities were more influenced by soil characteristics (pH, CEC, exchangeable cations, clay content). The Avena core microbiome was strongly phylogenetically clustered according to the metrics NRI and NTI, which indicates that selective processes likely shaped these communities. Furthermore, 17% of these taxa were not detectable in the background soil, even with a robust sequencing depth of approximately 70,000 sequences per sample. These results support the hypothesis that roots select less abundant or possibly rare populations in the soil microbial community, which appear to be lineages of bacteria that have made a physiological tradeoff for rhizosphere competence at the expense of their competitiveness in non‐rhizosphere soil.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/3824k1swData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0882.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/3824k1swData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0882.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Wiley Authors: Marshall D. McDaniel; Jeffrey A. Bird; Jennifer Pett‐Ridge; Erika Marin‐Spiotta; +2 AuthorsMarshall D. McDaniel; Jeffrey A. Bird; Jennifer Pett‐Ridge; Erika Marin‐Spiotta; Tom M. Schmidt; A. Stuart Grandy;AbstractManaging soils to retain new plant inputs is key to moving toward a sustainable and regenerative agriculture. Management practices, like diversifying and perennializing agroecosystems, may affect the decomposer organisms that regulate how new residue is converted to persistent soil organic matter. Here we tested whether 12 years of diversifying/perennializing plants in agroecosystems through extended rotations or grassland restoration would decrease losses of new plant residue inputs and, thus, increase retention of carbon (C) and nitrogen (N) in soil. We tracked dual‐labeled (13C and15N), isotopically enriched wheat (Triticum aestivum) residue in situ for 2 years as it decomposed in three agroecosystems: maize–soybean (CS) rotation, maize–soybean–wheat plus red clover and cereal rye cover crops (CSW2), and spring fallow management with regeneration of natural grassland species (seven to 10 species; SF). We measured losses of wheat residue (Cwheatand Nwheat) in leached soil solution and greenhouse gas fluxes, as well as how much was recovered in microbial biomass and bulk soil at 5‐cm increments down to 20 cm. CSW2 and SF both had unique, significant effects on residue decomposition and retention dynamics that were clear only when using nuanced metrics that able to tease apart subtle differences. For example, SF retained a greater portion of Cwheatin 0–5 cm surface soils (155%,p = 0.035) and narrowed the Cwheatto Nwheatratio (p < 0.030) compared to CS. CSW2 increased an index of carbon‐retention efficiency, Cwheatretained in the mesocosm divided by total measured, from 0.18 to 0.27 (49%,p = 0.001), compared to CS. Overall, we found that diversifying and extending the duration of living plants in agroecosystems can lead to greater retention of new residue inputs in subtle ways that require further investigation to fully understand.
University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2022License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1650Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of New Ha... arrow_drop_down University of New Hampshire: Scholars RepositoryArticle . 2022License: CC BYFull-Text: https://scholars.unh.edu/faculty_pubs/1650Data sources: Bielefeld Academic Search Engine (BASE)University of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Wiley Funded by:NSF | LTREB renewal: Progressi...NSF| LTREB renewal: Progressive Responses to Environmental Change Across Multiple EcosystemsEmber M. Morrissey; Egbert Schwartz; Steven J. Blazewicz; Paul Dijkstra; Rachel L. Rubin; Michaela Hayer; Rebecca L. Mau; Bruce A. Hungate; Jane C. Marks; Michelle C. Mack; Alicia M. Purcell; Natasja van Gestel; Benjamin J. Koch; Jennifer Pett-Ridge; Jennifer Pett-Ridge;AbstractThe carbon stored in soil exceeds that of plant biomass and atmospheric carbon and its stability can impact global climate. Growth of decomposer microorganisms mediates both the accrual and loss of soil carbon. Growth is sensitive to temperature and given the vast biological diversity of soil microorganisms, the response of decomposer growth rates to warming may be strongly idiosyncratic, varying among taxa, making ecosystem predictions difficult. Here, we show that 15 years of warming by transplanting plant–soil mesocosms down in elevation, strongly reduced the growth rates of soil microorganisms, measured in the field using undisturbed soil. The magnitude of the response to warming varied among microbial taxa. However, the direction of the response—reduced growth—was universal and warming explained twofold more variation than did the sum of taxonomic identity and its interaction with warming. For this ecosystem, most of the growth responses to warming could be explained without taxon‐specific information, suggesting that in some cases microbial responses measured in aggregate may be adequate for climate modeling. Long‐term experimental warming also reduced soil carbon content, likely a consequence of a warming‐induced increase in decomposition, as warming‐induced changes in plant productivity were negligible. The loss of soil carbon and decreased microbial biomass with warming may explain the reduced growth of the microbial community, more than the direct effects of temperature on growth. These findings show that direct and indirect effects of long‐term warming can reduce growth rates of soil microbes, which may have important feedbacks to global warming.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Bruce A. Hungate; Matthew E. Craig; Matthew E. Craig; Sara Vicca; Richard P. Phillips; Benjamin D. Stocker; Benjamin D. Stocker; K. Van Sundert; Benjamin N. Sulman; R. D. Evans; Peter B. Reich; K. J. van Groenigen; J. Rosende; César Terrer; César Terrer; Jennifer Pett-Ridge; J. Fisher; J. Fisher; Trevor F. Keenan; Haicheng Zhang; Elise Pendall; Robert B. Jackson; Yolima Carrillo; Adam F. A. Pellegrini; Adam F. A. Pellegrini;Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2) experiments4-6, SOC has been observed to increase, remain unchanged or even decline7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO2, SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests (0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised.
Nature arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03306-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 389 citations 389 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03306-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu