- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/69857/2010, EC | EnvMetaGenFCT| SFRH/BPD/69857/2010 ,EC| EnvMetaGenAuthors: Martínez-Freiría, Fernando; Argaz, Hamida; Fahd, Soumía; Brito, José C.;pmid: 23942550
The identification of species-rich areas and their prognosticated turnover under climate change are crucial for the conservation of endemic taxa. This study aims to identify areas of reptile endemicity richness in a global biodiversity hot spot (Morocco) under current and future climatic conditions and to investigate the role of protected areas in biodiversity conservation under climate change. Species distribution models (SDM) were performed over the distribution of 21 endemic reptiles, combined to estimate current species richness at 1 × 1 km resolution and projected to years 2050 and 2080 according to distinct story lines and ensemble global circulation models, assuming unlimited and null dispersion ability. Generalized additive models were performed between species richness and geographic characteristics of 43 protected areas. SDM found precipitation as the most important factor related to current species distributions. Important reductions in future suitable areas were predicted for 50 % of species, and four species were identified as highly vulnerable to extinction. Drastic reductions in species-rich areas were predicted for the future, with considerable variability between years and dispersal scenarios. High turnover rates of species composition were predicted for eastern Morocco, whereas low values were forecasted for the Northern Atlantic coast and mountains. Species richness for current and future conditions was significantly related to the altitude and latitude of protected areas. Protected areas located in mountains and/or in the Northern Atlantic coast were identified as refugia, where population monitoring and conservation management is needed.
The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/69857/2010, EC | EnvMetaGenFCT| SFRH/BPD/69857/2010 ,EC| EnvMetaGenAuthors: Martínez-Freiría, Fernando; Argaz, Hamida; Fahd, Soumía; Brito, José C.;pmid: 23942550
The identification of species-rich areas and their prognosticated turnover under climate change are crucial for the conservation of endemic taxa. This study aims to identify areas of reptile endemicity richness in a global biodiversity hot spot (Morocco) under current and future climatic conditions and to investigate the role of protected areas in biodiversity conservation under climate change. Species distribution models (SDM) were performed over the distribution of 21 endemic reptiles, combined to estimate current species richness at 1 × 1 km resolution and projected to years 2050 and 2080 according to distinct story lines and ensemble global circulation models, assuming unlimited and null dispersion ability. Generalized additive models were performed between species richness and geographic characteristics of 43 protected areas. SDM found precipitation as the most important factor related to current species distributions. Important reductions in future suitable areas were predicted for 50 % of species, and four species were identified as highly vulnerable to extinction. Drastic reductions in species-rich areas were predicted for the future, with considerable variability between years and dispersal scenarios. High turnover rates of species composition were predicted for eastern Morocco, whereas low values were forecasted for the Northern Atlantic coast and mountains. Species richness for current and future conditions was significantly related to the altitude and latitude of protected areas. Protected areas located in mountains and/or in the Northern Atlantic coast were identified as refugia, where population monitoring and conservation management is needed.
The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Portugal, Portugal, United KingdomPublisher:Wiley Funded by:FCT | SFRH/BPD/74423/2010, FCT | SFRH/BD/73680/2010FCT| SFRH/BPD/74423/2010 ,FCT| SFRH/BD/73680/2010Hugo Rebelo; Dieng Hamidou; Koen De Smet; Nathalie Pettorelli; Soumia Fahd; José Carlos Brito; Cândida Gomes Vale; Susan M. Canney; Abdoulaye Harouna; Teresa Luísa Silva; Thomas Rabeil; Amina Fellous; Tim Wacher; Pierre-André Crochet; John Newby; Walid Algadafi; Abdullah Nagy; Sílvia B. Carvalho; Andack Saad Sow; Mahamat Hassan Hatcha; Zbyszek Boratyński; Juan M. Pleguezuelos; João Carlos Campos; Maria Joana Ferreira da Silva; Maria Joana Ferreira da Silva; Maria Joana Ferreira da Silva; Fernando Martínez-Freiría; Hamissou Halilou Malam Garba; Teresa Abáigar; Sarah M. Durant; Duarte V. Gonçalves; Duarte V. Gonçalves; Pierre Comizzoli;AbstractIncreasing conflicts and social insecurity are expected to accelerate biodiversity decline and escalate illegal wildlife killing. Sahara‐Sahel megafauna has experienced recent continuous decline due to unsustainable hunting pressure. Here, we provide the best available data on distribution and population trends of threatened, large vertebrates, to illustrate how escalating regional conflict (565% growth since 2011) is hastening population decline in areas that were formerly refugia for megafauna. Without conservation action, the unique and iconic biodiversity of Earth's largest desert will be forever lost. We recommend: (1) establishing strong commitments for change in global attitude toward nature; (2) engraining a culture of environmental responsibility among all stakeholders; (3) fostering environmental awareness to drive societal change; (4) reinforcing regional security and firearms control; and (5) implementing local research and wildlife monitoring schemes. We identify relevant international partners needed to tackle these challenges and to make strong policy change for biodiversity conservation and regional stability.
Conservation Letters arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2018License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 20visibility views 20 download downloads 9 Powered bymore_vert Conservation Letters arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2018License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Portugal, Portugal, United KingdomPublisher:Wiley Funded by:FCT | SFRH/BPD/74423/2010, FCT | SFRH/BD/73680/2010FCT| SFRH/BPD/74423/2010 ,FCT| SFRH/BD/73680/2010Hugo Rebelo; Dieng Hamidou; Koen De Smet; Nathalie Pettorelli; Soumia Fahd; José Carlos Brito; Cândida Gomes Vale; Susan M. Canney; Abdoulaye Harouna; Teresa Luísa Silva; Thomas Rabeil; Amina Fellous; Tim Wacher; Pierre-André Crochet; John Newby; Walid Algadafi; Abdullah Nagy; Sílvia B. Carvalho; Andack Saad Sow; Mahamat Hassan Hatcha; Zbyszek Boratyński; Juan M. Pleguezuelos; João Carlos Campos; Maria Joana Ferreira da Silva; Maria Joana Ferreira da Silva; Maria Joana Ferreira da Silva; Fernando Martínez-Freiría; Hamissou Halilou Malam Garba; Teresa Abáigar; Sarah M. Durant; Duarte V. Gonçalves; Duarte V. Gonçalves; Pierre Comizzoli;AbstractIncreasing conflicts and social insecurity are expected to accelerate biodiversity decline and escalate illegal wildlife killing. Sahara‐Sahel megafauna has experienced recent continuous decline due to unsustainable hunting pressure. Here, we provide the best available data on distribution and population trends of threatened, large vertebrates, to illustrate how escalating regional conflict (565% growth since 2011) is hastening population decline in areas that were formerly refugia for megafauna. Without conservation action, the unique and iconic biodiversity of Earth's largest desert will be forever lost. We recommend: (1) establishing strong commitments for change in global attitude toward nature; (2) engraining a culture of environmental responsibility among all stakeholders; (3) fostering environmental awareness to drive societal change; (4) reinforcing regional security and firearms control; and (5) implementing local research and wildlife monitoring schemes. We identify relevant international partners needed to tackle these challenges and to make strong policy change for biodiversity conservation and regional stability.
Conservation Letters arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2018License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 20visibility views 20 download downloads 9 Powered bymore_vert Conservation Letters arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2018License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Wiley Funded by:EC | EnvMetaGenEC| EnvMetaGenPedro Tarroso; Raquel Godinho; Guillermo Velo-Antón; Juan M. Pleguezuelos; Xavier Santos; Francisco Álvares; João V. Leite; Pierre-André Crochet; Neftalí Sillero; Zbyszek Boratyński; Zbyszek Boratyński; Soumia Fahd; Andack Saad Sow; Hugo Rebelo; Hugo Rebelo; Fernando Martínez-Freiría; Salvador Carranza; Sonia Maria Soares Ferreira; Teresa Luísa Silva; Cândida Gomes Vale; João Carlos Campos; Sílvia B. Carvalho; José Carlos Brito; Joana Garrido Nogueira; Duarte V. Gonçalves;ABSTRACTDeserts and arid regions are generally perceived as bare and rather homogeneous areas of low diversity. The Sahara is the largest warm desert in the world and together with the arid Sahel displays high topographical and climatic heterogeneity, and has experienced recent and strong climatic oscillations that have greatly shifted biodiversity distribution and community composition. The large size, remoteness and long‐term political instability of the Sahara‐Sahel, have limited knowledge on its biodiversity. However, over the last decade, there have been an increasing number of published scientific studies based on modern geomatic and molecular tools, and broad sampling of taxa of these regions. This review tracks trends in knowledge about biodiversity patterns, processes and threats across the Sahara‐Sahel, and anticipates needs for biodiversity research and conservation. Recent studies are changing completely the perception of regional biodiversity patterns. Instead of relatively low species diversity with distribution covering most of the region, studies now suggest a high rate of endemism and larger number of species, with much narrower and fragmented ranges, frequently limited to micro‐hotspots of biodiversity. Molecular‐based studies are also unravelling cryptic diversity associated with mountains, which together with recent distribution atlases, allows identifying integrative biogeographic patterns in biodiversity distribution. Mapping of multivariate environmental variation (at 1 km × 1 km resolution) of the region illustrates main biogeographical features of the Sahara‐Sahel and supports recently hypothesised dispersal corridors and refugia. Micro‐scale water‐features present mostly in mountains have been associated with local biodiversity hotspots. However, the distribution of available data on vertebrates highlights current knowledge gaps that still apply to a large proportion of the Sahara‐Sahel. Current research is providing insights into key evolutionary and ecological processes, including causes and timing of radiation and divergence for multiple taxa, and associating the onset of the Sahara with diversification processes for low‐mobility vertebrates. Examples of phylogeographic patterns are showing the importance of allopatric speciation in the Sahara‐Sahel, and this review presents a synthetic overview of the most commonly hypothesised diversification mechanisms. Studies are also stressing that biodiversity is threatened by increasing human activities in the region, including overhunting and natural resources prospection, and in the future by predicted global warming. A representation of areas of conflict, landmines, and natural resources extraction illustrates how human activities and regional insecurity are hampering biodiversity research and conservation. Although there are still numerous knowledge gaps for the optimised conservation of biodiversity in the region, a set of research priorities is provided to identify the framework data needed to support regional conservation planning.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABiological ReviewsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 172 citations 172 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 35 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABiological ReviewsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Wiley Funded by:EC | EnvMetaGenEC| EnvMetaGenPedro Tarroso; Raquel Godinho; Guillermo Velo-Antón; Juan M. Pleguezuelos; Xavier Santos; Francisco Álvares; João V. Leite; Pierre-André Crochet; Neftalí Sillero; Zbyszek Boratyński; Zbyszek Boratyński; Soumia Fahd; Andack Saad Sow; Hugo Rebelo; Hugo Rebelo; Fernando Martínez-Freiría; Salvador Carranza; Sonia Maria Soares Ferreira; Teresa Luísa Silva; Cândida Gomes Vale; João Carlos Campos; Sílvia B. Carvalho; José Carlos Brito; Joana Garrido Nogueira; Duarte V. Gonçalves;ABSTRACTDeserts and arid regions are generally perceived as bare and rather homogeneous areas of low diversity. The Sahara is the largest warm desert in the world and together with the arid Sahel displays high topographical and climatic heterogeneity, and has experienced recent and strong climatic oscillations that have greatly shifted biodiversity distribution and community composition. The large size, remoteness and long‐term political instability of the Sahara‐Sahel, have limited knowledge on its biodiversity. However, over the last decade, there have been an increasing number of published scientific studies based on modern geomatic and molecular tools, and broad sampling of taxa of these regions. This review tracks trends in knowledge about biodiversity patterns, processes and threats across the Sahara‐Sahel, and anticipates needs for biodiversity research and conservation. Recent studies are changing completely the perception of regional biodiversity patterns. Instead of relatively low species diversity with distribution covering most of the region, studies now suggest a high rate of endemism and larger number of species, with much narrower and fragmented ranges, frequently limited to micro‐hotspots of biodiversity. Molecular‐based studies are also unravelling cryptic diversity associated with mountains, which together with recent distribution atlases, allows identifying integrative biogeographic patterns in biodiversity distribution. Mapping of multivariate environmental variation (at 1 km × 1 km resolution) of the region illustrates main biogeographical features of the Sahara‐Sahel and supports recently hypothesised dispersal corridors and refugia. Micro‐scale water‐features present mostly in mountains have been associated with local biodiversity hotspots. However, the distribution of available data on vertebrates highlights current knowledge gaps that still apply to a large proportion of the Sahara‐Sahel. Current research is providing insights into key evolutionary and ecological processes, including causes and timing of radiation and divergence for multiple taxa, and associating the onset of the Sahara with diversification processes for low‐mobility vertebrates. Examples of phylogeographic patterns are showing the importance of allopatric speciation in the Sahara‐Sahel, and this review presents a synthetic overview of the most commonly hypothesised diversification mechanisms. Studies are also stressing that biodiversity is threatened by increasing human activities in the region, including overhunting and natural resources prospection, and in the future by predicted global warming. A representation of areas of conflict, landmines, and natural resources extraction illustrates how human activities and regional insecurity are hampering biodiversity research and conservation. Although there are still numerous knowledge gaps for the optimised conservation of biodiversity in the region, a set of research priorities is provided to identify the framework data needed to support regional conservation planning.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABiological ReviewsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 172 citations 172 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 35 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABiological ReviewsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/69857/2010, EC | EnvMetaGenFCT| SFRH/BPD/69857/2010 ,EC| EnvMetaGenAuthors: Martínez-Freiría, Fernando; Argaz, Hamida; Fahd, Soumía; Brito, José C.;pmid: 23942550
The identification of species-rich areas and their prognosticated turnover under climate change are crucial for the conservation of endemic taxa. This study aims to identify areas of reptile endemicity richness in a global biodiversity hot spot (Morocco) under current and future climatic conditions and to investigate the role of protected areas in biodiversity conservation under climate change. Species distribution models (SDM) were performed over the distribution of 21 endemic reptiles, combined to estimate current species richness at 1 × 1 km resolution and projected to years 2050 and 2080 according to distinct story lines and ensemble global circulation models, assuming unlimited and null dispersion ability. Generalized additive models were performed between species richness and geographic characteristics of 43 protected areas. SDM found precipitation as the most important factor related to current species distributions. Important reductions in future suitable areas were predicted for 50 % of species, and four species were identified as highly vulnerable to extinction. Drastic reductions in species-rich areas were predicted for the future, with considerable variability between years and dispersal scenarios. High turnover rates of species composition were predicted for eastern Morocco, whereas low values were forecasted for the Northern Atlantic coast and mountains. Species richness for current and future conditions was significantly related to the altitude and latitude of protected areas. Protected areas located in mountains and/or in the Northern Atlantic coast were identified as refugia, where population monitoring and conservation management is needed.
The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/69857/2010, EC | EnvMetaGenFCT| SFRH/BPD/69857/2010 ,EC| EnvMetaGenAuthors: Martínez-Freiría, Fernando; Argaz, Hamida; Fahd, Soumía; Brito, José C.;pmid: 23942550
The identification of species-rich areas and their prognosticated turnover under climate change are crucial for the conservation of endemic taxa. This study aims to identify areas of reptile endemicity richness in a global biodiversity hot spot (Morocco) under current and future climatic conditions and to investigate the role of protected areas in biodiversity conservation under climate change. Species distribution models (SDM) were performed over the distribution of 21 endemic reptiles, combined to estimate current species richness at 1 × 1 km resolution and projected to years 2050 and 2080 according to distinct story lines and ensemble global circulation models, assuming unlimited and null dispersion ability. Generalized additive models were performed between species richness and geographic characteristics of 43 protected areas. SDM found precipitation as the most important factor related to current species distributions. Important reductions in future suitable areas were predicted for 50 % of species, and four species were identified as highly vulnerable to extinction. Drastic reductions in species-rich areas were predicted for the future, with considerable variability between years and dispersal scenarios. High turnover rates of species composition were predicted for eastern Morocco, whereas low values were forecasted for the Northern Atlantic coast and mountains. Species richness for current and future conditions was significantly related to the altitude and latitude of protected areas. Protected areas located in mountains and/or in the Northern Atlantic coast were identified as refugia, where population monitoring and conservation management is needed.
The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of Natur... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00114-013-1088-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Portugal, Portugal, United KingdomPublisher:Wiley Funded by:FCT | SFRH/BPD/74423/2010, FCT | SFRH/BD/73680/2010FCT| SFRH/BPD/74423/2010 ,FCT| SFRH/BD/73680/2010Hugo Rebelo; Dieng Hamidou; Koen De Smet; Nathalie Pettorelli; Soumia Fahd; José Carlos Brito; Cândida Gomes Vale; Susan M. Canney; Abdoulaye Harouna; Teresa Luísa Silva; Thomas Rabeil; Amina Fellous; Tim Wacher; Pierre-André Crochet; John Newby; Walid Algadafi; Abdullah Nagy; Sílvia B. Carvalho; Andack Saad Sow; Mahamat Hassan Hatcha; Zbyszek Boratyński; Juan M. Pleguezuelos; João Carlos Campos; Maria Joana Ferreira da Silva; Maria Joana Ferreira da Silva; Maria Joana Ferreira da Silva; Fernando Martínez-Freiría; Hamissou Halilou Malam Garba; Teresa Abáigar; Sarah M. Durant; Duarte V. Gonçalves; Duarte V. Gonçalves; Pierre Comizzoli;AbstractIncreasing conflicts and social insecurity are expected to accelerate biodiversity decline and escalate illegal wildlife killing. Sahara‐Sahel megafauna has experienced recent continuous decline due to unsustainable hunting pressure. Here, we provide the best available data on distribution and population trends of threatened, large vertebrates, to illustrate how escalating regional conflict (565% growth since 2011) is hastening population decline in areas that were formerly refugia for megafauna. Without conservation action, the unique and iconic biodiversity of Earth's largest desert will be forever lost. We recommend: (1) establishing strong commitments for change in global attitude toward nature; (2) engraining a culture of environmental responsibility among all stakeholders; (3) fostering environmental awareness to drive societal change; (4) reinforcing regional security and firearms control; and (5) implementing local research and wildlife monitoring schemes. We identify relevant international partners needed to tackle these challenges and to make strong policy change for biodiversity conservation and regional stability.
Conservation Letters arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2018License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 20visibility views 20 download downloads 9 Powered bymore_vert Conservation Letters arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2018License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Portugal, Portugal, United KingdomPublisher:Wiley Funded by:FCT | SFRH/BPD/74423/2010, FCT | SFRH/BD/73680/2010FCT| SFRH/BPD/74423/2010 ,FCT| SFRH/BD/73680/2010Hugo Rebelo; Dieng Hamidou; Koen De Smet; Nathalie Pettorelli; Soumia Fahd; José Carlos Brito; Cândida Gomes Vale; Susan M. Canney; Abdoulaye Harouna; Teresa Luísa Silva; Thomas Rabeil; Amina Fellous; Tim Wacher; Pierre-André Crochet; John Newby; Walid Algadafi; Abdullah Nagy; Sílvia B. Carvalho; Andack Saad Sow; Mahamat Hassan Hatcha; Zbyszek Boratyński; Juan M. Pleguezuelos; João Carlos Campos; Maria Joana Ferreira da Silva; Maria Joana Ferreira da Silva; Maria Joana Ferreira da Silva; Fernando Martínez-Freiría; Hamissou Halilou Malam Garba; Teresa Abáigar; Sarah M. Durant; Duarte V. Gonçalves; Duarte V. Gonçalves; Pierre Comizzoli;AbstractIncreasing conflicts and social insecurity are expected to accelerate biodiversity decline and escalate illegal wildlife killing. Sahara‐Sahel megafauna has experienced recent continuous decline due to unsustainable hunting pressure. Here, we provide the best available data on distribution and population trends of threatened, large vertebrates, to illustrate how escalating regional conflict (565% growth since 2011) is hastening population decline in areas that were formerly refugia for megafauna. Without conservation action, the unique and iconic biodiversity of Earth's largest desert will be forever lost. We recommend: (1) establishing strong commitments for change in global attitude toward nature; (2) engraining a culture of environmental responsibility among all stakeholders; (3) fostering environmental awareness to drive societal change; (4) reinforcing regional security and firearms control; and (5) implementing local research and wildlife monitoring schemes. We identify relevant international partners needed to tackle these challenges and to make strong policy change for biodiversity conservation and regional stability.
Conservation Letters arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2018License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 20visibility views 20 download downloads 9 Powered bymore_vert Conservation Letters arrow_drop_down Universidade de Lisboa: Repositório.ULArticle . 2018License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/conl.12446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Wiley Funded by:EC | EnvMetaGenEC| EnvMetaGenPedro Tarroso; Raquel Godinho; Guillermo Velo-Antón; Juan M. Pleguezuelos; Xavier Santos; Francisco Álvares; João V. Leite; Pierre-André Crochet; Neftalí Sillero; Zbyszek Boratyński; Zbyszek Boratyński; Soumia Fahd; Andack Saad Sow; Hugo Rebelo; Hugo Rebelo; Fernando Martínez-Freiría; Salvador Carranza; Sonia Maria Soares Ferreira; Teresa Luísa Silva; Cândida Gomes Vale; João Carlos Campos; Sílvia B. Carvalho; José Carlos Brito; Joana Garrido Nogueira; Duarte V. Gonçalves;ABSTRACTDeserts and arid regions are generally perceived as bare and rather homogeneous areas of low diversity. The Sahara is the largest warm desert in the world and together with the arid Sahel displays high topographical and climatic heterogeneity, and has experienced recent and strong climatic oscillations that have greatly shifted biodiversity distribution and community composition. The large size, remoteness and long‐term political instability of the Sahara‐Sahel, have limited knowledge on its biodiversity. However, over the last decade, there have been an increasing number of published scientific studies based on modern geomatic and molecular tools, and broad sampling of taxa of these regions. This review tracks trends in knowledge about biodiversity patterns, processes and threats across the Sahara‐Sahel, and anticipates needs for biodiversity research and conservation. Recent studies are changing completely the perception of regional biodiversity patterns. Instead of relatively low species diversity with distribution covering most of the region, studies now suggest a high rate of endemism and larger number of species, with much narrower and fragmented ranges, frequently limited to micro‐hotspots of biodiversity. Molecular‐based studies are also unravelling cryptic diversity associated with mountains, which together with recent distribution atlases, allows identifying integrative biogeographic patterns in biodiversity distribution. Mapping of multivariate environmental variation (at 1 km × 1 km resolution) of the region illustrates main biogeographical features of the Sahara‐Sahel and supports recently hypothesised dispersal corridors and refugia. Micro‐scale water‐features present mostly in mountains have been associated with local biodiversity hotspots. However, the distribution of available data on vertebrates highlights current knowledge gaps that still apply to a large proportion of the Sahara‐Sahel. Current research is providing insights into key evolutionary and ecological processes, including causes and timing of radiation and divergence for multiple taxa, and associating the onset of the Sahara with diversification processes for low‐mobility vertebrates. Examples of phylogeographic patterns are showing the importance of allopatric speciation in the Sahara‐Sahel, and this review presents a synthetic overview of the most commonly hypothesised diversification mechanisms. Studies are also stressing that biodiversity is threatened by increasing human activities in the region, including overhunting and natural resources prospection, and in the future by predicted global warming. A representation of areas of conflict, landmines, and natural resources extraction illustrates how human activities and regional insecurity are hampering biodiversity research and conservation. Although there are still numerous knowledge gaps for the optimised conservation of biodiversity in the region, a set of research priorities is provided to identify the framework data needed to support regional conservation planning.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABiological ReviewsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 172 citations 172 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 35 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABiological ReviewsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Wiley Funded by:EC | EnvMetaGenEC| EnvMetaGenPedro Tarroso; Raquel Godinho; Guillermo Velo-Antón; Juan M. Pleguezuelos; Xavier Santos; Francisco Álvares; João V. Leite; Pierre-André Crochet; Neftalí Sillero; Zbyszek Boratyński; Zbyszek Boratyński; Soumia Fahd; Andack Saad Sow; Hugo Rebelo; Hugo Rebelo; Fernando Martínez-Freiría; Salvador Carranza; Sonia Maria Soares Ferreira; Teresa Luísa Silva; Cândida Gomes Vale; João Carlos Campos; Sílvia B. Carvalho; José Carlos Brito; Joana Garrido Nogueira; Duarte V. Gonçalves;ABSTRACTDeserts and arid regions are generally perceived as bare and rather homogeneous areas of low diversity. The Sahara is the largest warm desert in the world and together with the arid Sahel displays high topographical and climatic heterogeneity, and has experienced recent and strong climatic oscillations that have greatly shifted biodiversity distribution and community composition. The large size, remoteness and long‐term political instability of the Sahara‐Sahel, have limited knowledge on its biodiversity. However, over the last decade, there have been an increasing number of published scientific studies based on modern geomatic and molecular tools, and broad sampling of taxa of these regions. This review tracks trends in knowledge about biodiversity patterns, processes and threats across the Sahara‐Sahel, and anticipates needs for biodiversity research and conservation. Recent studies are changing completely the perception of regional biodiversity patterns. Instead of relatively low species diversity with distribution covering most of the region, studies now suggest a high rate of endemism and larger number of species, with much narrower and fragmented ranges, frequently limited to micro‐hotspots of biodiversity. Molecular‐based studies are also unravelling cryptic diversity associated with mountains, which together with recent distribution atlases, allows identifying integrative biogeographic patterns in biodiversity distribution. Mapping of multivariate environmental variation (at 1 km × 1 km resolution) of the region illustrates main biogeographical features of the Sahara‐Sahel and supports recently hypothesised dispersal corridors and refugia. Micro‐scale water‐features present mostly in mountains have been associated with local biodiversity hotspots. However, the distribution of available data on vertebrates highlights current knowledge gaps that still apply to a large proportion of the Sahara‐Sahel. Current research is providing insights into key evolutionary and ecological processes, including causes and timing of radiation and divergence for multiple taxa, and associating the onset of the Sahara with diversification processes for low‐mobility vertebrates. Examples of phylogeographic patterns are showing the importance of allopatric speciation in the Sahara‐Sahel, and this review presents a synthetic overview of the most commonly hypothesised diversification mechanisms. Studies are also stressing that biodiversity is threatened by increasing human activities in the region, including overhunting and natural resources prospection, and in the future by predicted global warming. A representation of areas of conflict, landmines, and natural resources extraction illustrates how human activities and regional insecurity are hampering biodiversity research and conservation. Although there are still numerous knowledge gaps for the optimised conservation of biodiversity in the region, a set of research priorities is provided to identify the framework data needed to support regional conservation planning.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABiological ReviewsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 172 citations 172 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 54visibility views 54 download downloads 35 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABiological ReviewsArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu