- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:Wiley Luke Gibson; Michela Pacifici; Lyubing Zhang; Lyubing Zhang; Binbin V. Li;doi: 10.1111/csp2.177
handle: 11573/1402744
AbstractOngoing perturbations in the global climate have triggered changes in the frequency or magnitude of extreme climatic events, including drought. Increasingly common or intense droughts have threatened ungulates. Intensifying trend of drought has been observed in China since the 1980s. We assessed drought vulnerability of 60 ungulate taxa distributed in China by synthesizing information on drought exposure and intrinsic vulnerability related to biological traits. In total, 27 taxa were identified as vulnerable to drought, which represent over half of the taxa assessed as threatened in the IUCN Red List and China's National Red List. We identified hotspots where a high number of drought‐vulnerable taxa are concentrated, including Northeast Himalayan subalpine conifer forests, alpine conifer and mixed forests of Nujiang‐Lancang Gorge, and Qionglai‐Minshan conifer forests, which are all located in Southwest China. We also assessed conservation efforts that China has allocated to ungulate taxa vulnerable to drought. Drought‐vulnerable taxa that are endemic to China have significantly lower coverage in China's National Nature Reserve system compared with nonvulnerable taxa. These findings reveal the gaps in existing conservation efforts and indicate possible improvements that might be needed to maintain species resistance in the face of increasing and intensifying drought impacts.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaConservation Science and PracticeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/csp2.177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaConservation Science and PracticeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/csp2.177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, ItalyPublisher:Wiley Authors: Michela Pacifici; Piero Visconti; Piero Visconti; Carlo Rondinini;AbstractAs rates of global warming increase rapidly, identifying species at risk of decline due to climate impacts and the factors affecting this risk have become key challenges in ecology and conservation biology. Here, we present a framework for assessing three components of climate‐related risk for species: vulnerability, exposure and hazard. We used the relationship between the observed response of species to climate change and a set of intrinsic traits (e.g. weaning age) and extrinsic factors (e.g. precipitation seasonality within a species geographic range) to predict, respectively, the vulnerability and exposure of all data‐sufficient terrestrial non‐volant mammals (3,953 species). Combining this information with hazard (the magnitude of projected climate change within a species geographic range), we identified global hotspots of species at risk from climate change that includes the western Amazon basin, south‐western Kenya, north‐eastern Tanzania, north‐eastern South Africa, Yunnan province in China, and mountain chains in Papua‐New Guinea. Our framework identifies priority areas for monitoring climate change effects on species and directing climate mitigation actions for biodiversity.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of), Australia, Australia, Italy, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Wendy Foden; Michela Pacifici; Tara G. Martin; John M. Pandolfi; Carlo Rondinini; Stuart H. M. Butchart; Stuart H. M. Butchart; Camilo Mora; Tom C. L. Bridge; Tom C. L. Bridge; Ary A. Hoffmann; James E. M. Watson; James E. M. Watson; Brett R. Scheffers; David Dudgeon; Luc De Meester; Richard T. Corlett; David Bickford; Kit M. Kovacs; Paul Pearce-Kelly;Accumulating impacts Anthropogenic climate change is now in full swing, our global average temperature already having increased by 1°C from preindustrial levels. Many studies have documented individual impacts of the changing climate that are particular to species or regions, but individual impacts are accumulating and being amplified more broadly. Scheffers et al. review the set of impacts that have been observed across genes, species, and ecosystems to reveal a world already undergoing substantial change. Understanding the causes, consequences, and potential mitigation of these changes will be essential as we move forward into a warming world. Science , this issue p. 10.1126/science.aaf7671
Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu992 citations 992 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, ItalyPublisher:Wiley Funded by:FCT | 2020.01129.CEECIND/CP1601/CT0004FCT| 2020.01129.CEECIND/CP1601/CT0004Francesca Festa; Leonardo Ancillotto; Luca Santini; Michela Pacifici; Ricardo Rocha; Nia Toshkova; Francisco Amorim; Ana Benítez-López; Adi Domer; Daniela Hamidovi; Stephanie Kramer-Schadt; Fiona Mathews; Viktoriia Radchuk; Hugo Rebelo; Ireneusz Ruczynski; Estelle Solem; Asaf Tsoar; Danilo Russo; Orly Razgour;ABSTRACTUnderstanding how species respond to climate change is key to informing vulnerability assessments and designing effective conservation strategies, yet research efforts on wildlife responses to climate change fail to deliver a representative overview due to inherent biases. Bats are a species‐rich, globally distributed group of organisms that are thought to be particularly sensitive to the effects of climate change because of their high surface‐to‐volume ratios and low reproductive rates. We systematically reviewed the literature on bat responses to climate change to provide an overview of the current state of knowledge, identify research gaps and biases and highlight future research needs. We found that studies are geographically biased towards Europe, North America and Australia, and temperate and Mediterranean biomes, thus missing a substantial proportion of bat diversity and thermal responses. Less than half of the published studies provide concrete evidence for bat responses to climate change. For over a third of studied bat species, response evidence is only based on predictive species distribution models. Consequently, the most frequently reported responses involve range shifts (57% of species) and changes in patterns of species diversity (26%). Bats showed a variety of responses, including both positive (e.g. range expansion and population increase) and negative responses (range contraction and population decrease), although responses to extreme events were always negative or neutral. Spatial responses varied in their outcome and across families, with almost all taxonomic groups featuring both range expansions and contractions, while demographic responses were strongly biased towards negative outcomes, particularly among Pteropodidae and Molossidae. The commonly used correlative modelling approaches can be applied to many species, but do not provide mechanistic insight into behavioural, physiological, phenological or genetic responses. There was a paucity of experimental studies (26%), and only a small proportion of the 396 bat species covered in the examined studies were studied using long‐term and/or experimental approaches (11%), even though they are more informative about the effects of climate change. We emphasise the need for more empirical studies to unravel the multifaceted nature of bats' responses to climate change and the need for standardised study designs that will enable synthesis and meta‐analysis of the literature. Finally, we stress the importance of overcoming geographic and taxonomic disparities through strengthening research capacity in the Global South to provide a more comprehensive view of terrestrial biodiversity responses to climate change.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaOpen Research ExeterArticle . 2022License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36054527Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaOpen Research ExeterArticle . 2022License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36054527Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Italy, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | PROTECTNICHEEC| PROTECTNICHEMichela Pacifici; Carlo Rondinini; John C. Z. Woinarski; Andrea Cristiano; James E. M. Watson; James E. M. Watson; Moreno Di Marco; Moreno Di Marco; Moreno Di Marco; Andrew A. Burbidge; Jonathan R. Rhodes;AbstractUnderstanding changes in species distributions is essential to disentangle the mechanisms that drive their responses to anthropogenic habitat modification. Here we analyse the past (1970s) and current (2017) distribution of 204 species of terrestrial non-volant mammals to identify drivers of recent contraction and expansion in their range. We find 106 species lost part of their past range, and 40 of them declined by >50%. The key correlates of this contraction are large body mass, increase in air temperature, loss of natural land, and high human population density. At the same time, 44 species have some expansion in their range, which correlates with small body size, generalist diet, and high reproductive rates. Our findings clearly show that human activity and life history interact to influence range changes in mammals. While the former plays a major role in determining contraction in species’ distribution, the latter is important for both contraction and expansion.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/296204Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-16684-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/296204Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-16684-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Wiley Dino Biancolini; Michela Pacifici; Mattia Falaschi; Céline Bellard; Tim M. Blackburn; Gentile Francesco Ficetola; Carlo Rondinini;ABSTRACTThe recent thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services reaffirmed biological invasions as a major threat to biodiversity. Anticipating biological invasions is crucial for avoiding their ecological and socio‐economic impacts, particularly as climate change may provide new opportunities for the establishment and spread of alien species. However, no studies have combined assessments of suitability and dispersal to evaluate the invasion by key taxonomic groups, such as mammals. Using species distribution models, we estimated the potential effect of climate change on the future distributions of 205 alien mammal species by the year 2050 under three different climatic scenarios. We used species dispersal ability to differentiate between suitable areas that may be susceptible to natural dispersal from alien ranges (Spread Potential, SP) and those that may be vulnerable to alien establishment through human‐assisted dispersal (Establishment Potential, EP) across 11 zoogeographic realms. Establishment Potential was generally boosted by climate change, showing a clear poleward shift across scenarios, whereas SP was negatively affected by climate change and limited by alien species insularity. These trends were consistent across all realms. Insular ecosystems, while being vulnerable to invasion, may act as geographical traps for alien mammals that lose climatic suitability. In addition, our analysis identified the alien species that are expected to spread or decline the most in each realm, primarily generalists with high invasive potential, as likely foci of future management efforts. In some areas, the possible reduction in suitability for alien mammals could offer opportunities for ecosystem restoration, particularly on islands. In others, increased suitability calls for adequate actions to prevent their arrival and spread. Our findings are potentially valuable in informing synergistic actions addressing both climate change and biological invasion together to safeguard native biodiversity worldwide.
Archivio Istituziona... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1727231/1/Biancolini_Global-distribution_2024.pdfData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1727231/1/Biancolini_Global-distribution_2024.pdfData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:Wiley Luke Gibson; Michela Pacifici; Lyubing Zhang; Lyubing Zhang; Binbin V. Li;doi: 10.1111/csp2.177
handle: 11573/1402744
AbstractOngoing perturbations in the global climate have triggered changes in the frequency or magnitude of extreme climatic events, including drought. Increasingly common or intense droughts have threatened ungulates. Intensifying trend of drought has been observed in China since the 1980s. We assessed drought vulnerability of 60 ungulate taxa distributed in China by synthesizing information on drought exposure and intrinsic vulnerability related to biological traits. In total, 27 taxa were identified as vulnerable to drought, which represent over half of the taxa assessed as threatened in the IUCN Red List and China's National Red List. We identified hotspots where a high number of drought‐vulnerable taxa are concentrated, including Northeast Himalayan subalpine conifer forests, alpine conifer and mixed forests of Nujiang‐Lancang Gorge, and Qionglai‐Minshan conifer forests, which are all located in Southwest China. We also assessed conservation efforts that China has allocated to ungulate taxa vulnerable to drought. Drought‐vulnerable taxa that are endemic to China have significantly lower coverage in China's National Nature Reserve system compared with nonvulnerable taxa. These findings reveal the gaps in existing conservation efforts and indicate possible improvements that might be needed to maintain species resistance in the face of increasing and intensifying drought impacts.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaConservation Science and PracticeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/csp2.177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaConservation Science and PracticeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/csp2.177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, ItalyPublisher:Wiley Authors: Michela Pacifici; Piero Visconti; Piero Visconti; Carlo Rondinini;AbstractAs rates of global warming increase rapidly, identifying species at risk of decline due to climate impacts and the factors affecting this risk have become key challenges in ecology and conservation biology. Here, we present a framework for assessing three components of climate‐related risk for species: vulnerability, exposure and hazard. We used the relationship between the observed response of species to climate change and a set of intrinsic traits (e.g. weaning age) and extrinsic factors (e.g. precipitation seasonality within a species geographic range) to predict, respectively, the vulnerability and exposure of all data‐sufficient terrestrial non‐volant mammals (3,953 species). Combining this information with hazard (the magnitude of projected climate change within a species geographic range), we identified global hotspots of species at risk from climate change that includes the western Amazon basin, south‐western Kenya, north‐eastern Tanzania, north‐eastern South Africa, Yunnan province in China, and mountain chains in Papua‐New Guinea. Our framework identifies priority areas for monitoring climate change effects on species and directing climate mitigation actions for biodiversity.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of), Australia, Australia, Italy, AustraliaPublisher:American Association for the Advancement of Science (AAAS) Wendy Foden; Michela Pacifici; Tara G. Martin; John M. Pandolfi; Carlo Rondinini; Stuart H. M. Butchart; Stuart H. M. Butchart; Camilo Mora; Tom C. L. Bridge; Tom C. L. Bridge; Ary A. Hoffmann; James E. M. Watson; James E. M. Watson; Brett R. Scheffers; David Dudgeon; Luc De Meester; Richard T. Corlett; David Bickford; Kit M. Kovacs; Paul Pearce-Kelly;Accumulating impacts Anthropogenic climate change is now in full swing, our global average temperature already having increased by 1°C from preindustrial levels. Many studies have documented individual impacts of the changing climate that are particular to species or regions, but individual impacts are accumulating and being amplified more broadly. Scheffers et al. review the set of impacts that have been observed across genes, species, and ecosystems to reveal a world already undergoing substantial change. Understanding the causes, consequences, and potential mitigation of these changes will be essential as we move forward into a warming world. Science , this issue p. 10.1126/science.aaf7671
Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu992 citations 992 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down University of Hong Kong: HKU Scholars HubArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aaf7671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, ItalyPublisher:Wiley Funded by:FCT | 2020.01129.CEECIND/CP1601/CT0004FCT| 2020.01129.CEECIND/CP1601/CT0004Francesca Festa; Leonardo Ancillotto; Luca Santini; Michela Pacifici; Ricardo Rocha; Nia Toshkova; Francisco Amorim; Ana Benítez-López; Adi Domer; Daniela Hamidovi; Stephanie Kramer-Schadt; Fiona Mathews; Viktoriia Radchuk; Hugo Rebelo; Ireneusz Ruczynski; Estelle Solem; Asaf Tsoar; Danilo Russo; Orly Razgour;ABSTRACTUnderstanding how species respond to climate change is key to informing vulnerability assessments and designing effective conservation strategies, yet research efforts on wildlife responses to climate change fail to deliver a representative overview due to inherent biases. Bats are a species‐rich, globally distributed group of organisms that are thought to be particularly sensitive to the effects of climate change because of their high surface‐to‐volume ratios and low reproductive rates. We systematically reviewed the literature on bat responses to climate change to provide an overview of the current state of knowledge, identify research gaps and biases and highlight future research needs. We found that studies are geographically biased towards Europe, North America and Australia, and temperate and Mediterranean biomes, thus missing a substantial proportion of bat diversity and thermal responses. Less than half of the published studies provide concrete evidence for bat responses to climate change. For over a third of studied bat species, response evidence is only based on predictive species distribution models. Consequently, the most frequently reported responses involve range shifts (57% of species) and changes in patterns of species diversity (26%). Bats showed a variety of responses, including both positive (e.g. range expansion and population increase) and negative responses (range contraction and population decrease), although responses to extreme events were always negative or neutral. Spatial responses varied in their outcome and across families, with almost all taxonomic groups featuring both range expansions and contractions, while demographic responses were strongly biased towards negative outcomes, particularly among Pteropodidae and Molossidae. The commonly used correlative modelling approaches can be applied to many species, but do not provide mechanistic insight into behavioural, physiological, phenological or genetic responses. There was a paucity of experimental studies (26%), and only a small proportion of the 396 bat species covered in the examined studies were studied using long‐term and/or experimental approaches (11%), even though they are more informative about the effects of climate change. We emphasise the need for more empirical studies to unravel the multifaceted nature of bats' responses to climate change and the need for standardised study designs that will enable synthesis and meta‐analysis of the literature. Finally, we stress the importance of overcoming geographic and taxonomic disparities through strengthening research capacity in the Global South to provide a more comprehensive view of terrestrial biodiversity responses to climate change.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaOpen Research ExeterArticle . 2022License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36054527Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaOpen Research ExeterArticle . 2022License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/36054527Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BY NC NDData sources: Fachrepositorium Lebenswissenschaftenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Italy, AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | PROTECTNICHEEC| PROTECTNICHEMichela Pacifici; Carlo Rondinini; John C. Z. Woinarski; Andrea Cristiano; James E. M. Watson; James E. M. Watson; Moreno Di Marco; Moreno Di Marco; Moreno Di Marco; Andrew A. Burbidge; Jonathan R. Rhodes;AbstractUnderstanding changes in species distributions is essential to disentangle the mechanisms that drive their responses to anthropogenic habitat modification. Here we analyse the past (1970s) and current (2017) distribution of 204 species of terrestrial non-volant mammals to identify drivers of recent contraction and expansion in their range. We find 106 species lost part of their past range, and 40 of them declined by >50%. The key correlates of this contraction are large body mass, increase in air temperature, loss of natural land, and high human population density. At the same time, 44 species have some expansion in their range, which correlates with small body size, generalist diet, and high reproductive rates. Our findings clearly show that human activity and life history interact to influence range changes in mammals. While the former plays a major role in determining contraction in species’ distribution, the latter is important for both contraction and expansion.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/296204Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-16684-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/296204Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-16684-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Wiley Dino Biancolini; Michela Pacifici; Mattia Falaschi; Céline Bellard; Tim M. Blackburn; Gentile Francesco Ficetola; Carlo Rondinini;ABSTRACTThe recent thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services reaffirmed biological invasions as a major threat to biodiversity. Anticipating biological invasions is crucial for avoiding their ecological and socio‐economic impacts, particularly as climate change may provide new opportunities for the establishment and spread of alien species. However, no studies have combined assessments of suitability and dispersal to evaluate the invasion by key taxonomic groups, such as mammals. Using species distribution models, we estimated the potential effect of climate change on the future distributions of 205 alien mammal species by the year 2050 under three different climatic scenarios. We used species dispersal ability to differentiate between suitable areas that may be susceptible to natural dispersal from alien ranges (Spread Potential, SP) and those that may be vulnerable to alien establishment through human‐assisted dispersal (Establishment Potential, EP) across 11 zoogeographic realms. Establishment Potential was generally boosted by climate change, showing a clear poleward shift across scenarios, whereas SP was negatively affected by climate change and limited by alien species insularity. These trends were consistent across all realms. Insular ecosystems, while being vulnerable to invasion, may act as geographical traps for alien mammals that lose climatic suitability. In addition, our analysis identified the alien species that are expected to spread or decline the most in each realm, primarily generalists with high invasive potential, as likely foci of future management efforts. In some areas, the possible reduction in suitability for alien mammals could offer opportunities for ecosystem restoration, particularly on islands. In others, increased suitability calls for adequate actions to prevent their arrival and spread. Our findings are potentially valuable in informing synergistic actions addressing both climate change and biological invasion together to safeguard native biodiversity worldwide.
Archivio Istituziona... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1727231/1/Biancolini_Global-distribution_2024.pdfData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BYFull-Text: https://iris.uniroma1.it/bitstream/11573/1727231/1/Biancolini_Global-distribution_2024.pdfData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu