- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Funder
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012 Netherlands, Australia, FrancePublisher:Springer Science and Business Media LLC Authors:Anna L. Jacobsen;
Anna L. Jacobsen
Anna L. Jacobsen in OpenAIREMark Westoby;
Jarmila Pittermann; Amy E. Zanne; +22 AuthorsMark Westoby
Mark Westoby in OpenAIREAnna L. Jacobsen;
Anna L. Jacobsen
Anna L. Jacobsen in OpenAIREMark Westoby;
Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne;Mark Westoby
Mark Westoby in OpenAIREFrederic Lens;
Hafiz Maherali; R. Brandon Pratt;Frederic Lens
Frederic Lens in OpenAIREPatrick J. Mitchell;
Patrick J. Mitchell
Patrick J. Mitchell in OpenAIRERadika Bhaskar;
Radika Bhaskar
Radika Bhaskar in OpenAIREIan J. Wright;
Sean M. Gleason; Andrea Nardini; John S. Sperry;Ian J. Wright
Ian J. Wright in OpenAIREUwe G. Hacke;
Taylor S. Feild;Uwe G. Hacke
Uwe G. Hacke in OpenAIREMaurizio Mencuccini;
Maurizio Mencuccini
Maurizio Mencuccini in OpenAIRESylvain Delzon;
Sylvain Delzon
Sylvain Delzon in OpenAIRESteven Jansen;
Steven Jansen
Steven Jansen in OpenAIREBrendan Choat;
Brendan Choat
Brendan Choat in OpenAIRESandra Janet Bucci;
Sandra Janet Bucci
Sandra Janet Bucci in OpenAIREStefan Mayr;
Stefan Mayr
Stefan Mayr in OpenAIRETimothy J. Brodribb;
Timothy J. Brodribb
Timothy J. Brodribb in OpenAIREJordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIREHervé Cochard;
Hervé Cochard;Hervé Cochard
Hervé Cochard in OpenAIREdoi: 10.1038/nature11688
Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,027 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Oxford University Press (OUP) Authors:Liang Wei;
Liang Wei
Liang Wei in OpenAIREChonggang Xu;
Chonggang Xu
Chonggang Xu in OpenAIRESteven Jansen;
Hang Zhou; +5 AuthorsSteven Jansen
Steven Jansen in OpenAIRELiang Wei;
Liang Wei
Liang Wei in OpenAIREChonggang Xu;
Chonggang Xu
Chonggang Xu in OpenAIRESteven Jansen;
Hang Zhou; Bradley O Christoffersen;Steven Jansen
Steven Jansen in OpenAIREWilliam T Pockman;
Richard S Middleton; John D Marshall; Nate G McDowell;William T Pockman
William T Pockman in OpenAIREpmid: 30715506
Woody plants vary in their adaptations to drought and shade. For a better prediction of vegetation responses to drought and shade within dynamic global vegetation models, it is critical to group species into functional types with similar adaptations. One of the key challenges is that the adaptations are generally determined by a large number of plant traits that may not be available for a large number of species. In this study, we present two heuristic woody plant groups that were separated using cluster analysis in a three-dimensional trait-environment space based on three key metrics for each species: mean xylem embolism resistance, shade tolerance and habitat aridity. The two heuristic groups separate these species into tolerators and avoiders. The tolerators either rely on their high embolism resistance to tolerate drought in arid habitats (e.g., Juniperus and Prunus) or rely on high shade tolerance to withstand shaded conditions in wet habitats (e.g., Picea, Abies and Acer). In contrast, all avoiders have low embolism resistance and low shade tolerance. In arid habitats, avoiders tend to minimize catastrophic embolism (e.g., most Pinus species) while in wet habitats, they may survive despite low shade tolerance (e.g., Betula, Populus, Alnus and Salix). Because our approach links traits to the environmental conditions, we expect it could be a promising framework for predicting changes in species composition, and therefore ecosystem function, under changing environmental conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpy146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpy146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Wiley Funded by:NSF | CNH-L: Dynamic Impacts of...NSF| CNH-L: Dynamic Impacts of Environmental Change and Biomass Harvesting on Woodland Ecosystems and Traditional LivelihoodsAuthors: Anderegg, William R. L.; Wolf, Adam; Arango-Velez, Adriana;Choat, Brendan;
+11 AuthorsChoat, Brendan
Choat, Brendan in OpenAIREAnderegg, William R. L.; Wolf, Adam; Arango-Velez, Adriana;Choat, Brendan;
Choat, Brendan
Choat, Brendan in OpenAIREChmura, Daniel J.;
Chmura, Daniel J.
Chmura, Daniel J. in OpenAIREJansen, Steven;
Kolb, Thomas; Li, Shan; Kolb, Thomas;Jansen, Steven
Jansen, Steven in OpenAIREMeinzer, Frederick;
Pita, Pilar;Meinzer, Frederick
Meinzer, Frederick in OpenAIREResco de Dios, Víctor;
Sperry, John S.;Resco de Dios, Víctor
Resco de Dios, Víctor in OpenAIREWolfe, Brett T.;
Pacala, Stephen;Wolfe, Brett T.
Wolfe, Brett T. in OpenAIREdoi: 10.1111/ele.12962
pmid: 29687543
AbstractStomatal response to environmental conditions forms the backbone of all ecosystem and carbon cycle models, but is largely based on empirical relationships. Evolutionary theories of stomatal behaviour are critical for guarding against prediction errors of empirical models under future climates. Longstanding theory holds that stomata maximise fitness by acting to maintain constant marginal water use efficiency over a given time horizon, but a recent evolutionary theory proposes that stomata instead maximise carbon gain minus carbon costs/risk of hydraulic damage. Using data from 34 species that span global forest biomes, we find that the recent carbon‐maximisation optimisation theory is widely supported, revealing that the evolution of stomatal regulation has not been primarily driven by attainment of constant marginal water use efficiency. Optimal control of stomata to manage hydraulic risk is likely to have significant consequences for ecosystem fluxes during drought, which is critical given projected intensification of the global hydrological cycle.
Ecology Letters arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NCData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NCData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT130101115Authors: Anderegg, William RL;Klein, Tamir;
Bartlett, Megan;Klein, Tamir
Klein, Tamir in OpenAIRESack, Lawren;
+3 AuthorsSack, Lawren
Sack, Lawren in OpenAIREAnderegg, William RL;Klein, Tamir;
Bartlett, Megan;Klein, Tamir
Klein, Tamir in OpenAIRESack, Lawren;
Sack, Lawren
Sack, Lawren in OpenAIREPellegrini, Adam FA;
Pellegrini, Adam FA
Pellegrini, Adam FA in OpenAIREChoat, Brendan;
Choat, Brendan
Choat, Brendan in OpenAIREJansen, Steven;
Jansen, Steven
Jansen, Steven in OpenAIRESignificance Predicting the impacts of climate extremes on plant communities is a central challenge in ecology. Physiological traits may improve prediction of drought impacts on forests globally. We perform a meta-analysis across 33 studies that span all forested biomes and find that, among the examined traits, hydraulic traits explain cross-species patterns in mortality from drought. Gymnosperm and angiosperm mortality was associated with different hydraulic traits, giving insight into the relative weights of different traits and mechanisms in mortality prediction. Our results provide a foundation for more mechanistic predictions of drought-induced tree mortality across Earth’s diverse forests.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1525678113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 591 citations 591 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1525678113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Oxford University Press (OUP) Funded by:FWF | Hydraulics of juvenile tr...FWF| Hydraulics of juvenile trees: Effects of seed provenanceAuthors:Barbara Beikircher;
Barbara Beikircher
Barbara Beikircher in OpenAIREAdriano Losso;
Marilena Gemassmer;Adriano Losso
Adriano Losso in OpenAIRESteven Jansen;
+1 AuthorsSteven Jansen
Steven Jansen in OpenAIREBarbara Beikircher;
Barbara Beikircher
Barbara Beikircher in OpenAIREAdriano Losso;
Marilena Gemassmer;Adriano Losso
Adriano Losso in OpenAIRESteven Jansen;
Stefan Mayr;Steven Jansen
Steven Jansen in OpenAIREFertilization of woody plants plays a central role in agriculture and forestry, but little is known about how plant water relations are thereby affected. Here we investigated the impact of fertilization on tree hydraulics, and xylem and pit anatomy in the high-yield apple cultivars Golden and Red Delicious. In fertilized trees of Golden Delicious, specific hydraulic conductivity of branch xylem, hydraulic conductance of the root system, and maximum stomatal conductance increased considerably. In Red Delicious, differences between fertilized and control trees were less pronounced. In both cultivars, xylem embolism resistance of fertilized trees was significantly lower and stomatal closure occurred at lower water potentials. Furthermore, water potential at turgor loss point and osmotic potential at full saturation were higher and cell wall elasticity was lower in fertilized plants, suggesting reduced drought tolerance of leaves. Anatomical differences were observed regarding conduit diameters, cell wall reinforcement, pit membrane thickness, pit chamber depth, and stomatal pore length, with more pronounced differences in Golden Delicious. The findings reveal altered hydraulic behaviour in both apple cultivars upon fertilization. The increased vulnerability to hydraulic failure might pose a considerable risk for apple productivity under a changing climate, which should be considered for future cultivation and management practices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erz070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/erz070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Netherlands, ItalyPublisher:Wiley Authors:S. Joseph Wright;
S. Joseph Wright
S. Joseph Wright in OpenAIREIan J. Wright;
Ian J. Wright
Ian J. Wright in OpenAIREFelipe P. L. Melo;
Felipe P. L. Melo
Felipe P. L. Melo in OpenAIRERenato A. F. de Lima;
+37 AuthorsRenato A. F. de Lima
Renato A. F. de Lima in OpenAIRES. Joseph Wright;
S. Joseph Wright
S. Joseph Wright in OpenAIREIan J. Wright;
Ian J. Wright
Ian J. Wright in OpenAIREFelipe P. L. Melo;
Felipe P. L. Melo
Felipe P. L. Melo in OpenAIRERenato A. F. de Lima;
Renato A. F. de Lima;Renato A. F. de Lima
Renato A. F. de Lima in OpenAIREFerry Slik;
Ferry Slik
Ferry Slik in OpenAIREMartijn Slot;
Martijn Slot
Martijn Slot in OpenAIREMaíra Benchimol;
Maíra Benchimol
Maíra Benchimol in OpenAIRECarlos A. Peres;
Carlos A. Peres; G. A. Mendes; Valdecir Júnior;Carlos A. Peres
Carlos A. Peres in OpenAIRENathan G. Swenson;
Nathan G. Swenson
Nathan G. Swenson in OpenAIREMarcelo Tabarelli;
Marcelo Tabarelli
Marcelo Tabarelli in OpenAIREÜlo Niinemets;
Ülo Niinemets
Ülo Niinemets in OpenAIRESandra Cristina Müller;
Sandra Cristina Müller
Sandra Cristina Müller in OpenAIRENathan J. B. Kraft;
Nathan J. B. Kraft
Nathan J. B. Kraft in OpenAIREJens Kattge;
Jens Kattge
Jens Kattge in OpenAIREBruno X. Pinho;
Bruno X. Pinho
Bruno X. Pinho in OpenAIRENigel C. A. Pitman;
Bettina M. J. Engelbrecht; Bettina M. J. Engelbrecht;Nigel C. A. Pitman
Nigel C. A. Pitman in OpenAIREMiguel Martínez-Ramos;
Miguel Martínez-Ramos
Miguel Martínez-Ramos in OpenAIREEduardo Mariano-Neto;
Eduardo Mariano-Neto
Eduardo Mariano-Neto in OpenAIREBráulio A. Santos;
Richard Condit; Richard Condit; Manuel A. Hernández-Ruedas; Nancy C. Garwood;Bráulio A. Santos
Bráulio A. Santos in OpenAIRESteven Jansen;
Steven Jansen
Steven Jansen in OpenAIRESimon Pierce;
Simon Pierce
Simon Pierce in OpenAIREVíctor Arroyo-Rodríguez;
Víctor Arroyo-Rodríguez
Víctor Arroyo-Rodríguez in OpenAIREMadelon Lohbeck;
Madelon Lohbeck
Madelon Lohbeck in OpenAIRECajo J. F. ter Braak;
Davi Jamelli; Frans Bongers;Cajo J. F. ter Braak
Cajo J. F. ter Braak in OpenAIREDeborah Faria;
Deborah Faria
Deborah Faria in OpenAIREJos Barlow;
Jos Barlow
Jos Barlow in OpenAIREEduardo Chacón-Madrigal;
Eduardo Chacón-Madrigal
Eduardo Chacón-Madrigal in OpenAIREPeter Hietz;
Juan Ernesto Guevara Andino;Peter Hietz
Peter Hietz in OpenAIREdoi: 10.1111/geb.13309
handle: 2434/870022 , 1959.7/uws:61727
AbstractAimHere we examine the functional profile of regional tree species pools across the latitudinal distribution of Neotropical moist forests, and test trait–climate relationships among local communities. We expected opportunistic strategies (acquisitive traits, small seeds) to be overrepresented in species pools further from the equator, but also in terms of abundance in local communities in currently wetter, warmer and more seasonal climates.LocationNeotropics.Time periodRecent.Major taxa studiedTrees.MethodsWe obtained abundance data from 471 plots across nine Neotropical regions, including c. 100,000 trees of 3,417 species, in addition to six functional traits. We compared occurrence‐based trait distributions among regional species pools, and evaluated single trait–climate relationships across local communities using community abundance‐weighted means (CWMs). Multivariate trait–climate relationships were assessed by a double‐constrained correspondence analysis that tests both how CWMs relate to climate and how species distributions, parameterized by niche centroids in climate space, relate to their traits.ResultsRegional species pools were undistinguished in functional terms, but opportunistic strategies dominated local communities further from the equator, particularly in the Northern Hemisphere. Climate explained up to 57% of the variation in CWM traits, with increasing prevalence of lower‐statured, light‐wooded and softer‐leaved species bearing smaller seeds in more seasonal, wetter and warmer climates. Species distributions were significantly but weakly related to functional traits.Main conclusionsNeotropical moist forest regions share similar sets of functional strategies, from which local assembly processes, driven by current climatic conditions, select for species with different functional strategies. We can thus expect functional responses to climate change driven by changes in relative abundances of species already present regionally. Particularly, equatorial forests holding the most conservative traits and large seeds are likely to experience the most severe changes if climate change triggers the proliferation of opportunistic tree species.
Lancaster EPrints arrow_drop_down Global Ecology and BiogeographyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 65 Powered bymore_vert Lancaster EPrints arrow_drop_down Global Ecology and BiogeographyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13309&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Switzerland, Finland, Spain, Slovenia, Russian Federation, Netherlands, Russian FederationPublisher:Springer Science and Business Media LLC Funded by:AKA | Past Trends and Future Po..., EC | TreEsilience, FCT | SFRH/BPD/70632/2010 +2 projectsAKA| Past Trends and Future Potential of Forest Production in Finland ,EC| TreEsilience ,FCT| SFRH/BPD/70632/2010 ,MESTD| Studying climate change and its influence on environment: impacts, adaptation and mitigation ,EC| PHLOEMAPAuthors:Tom Levanič;
Tom Levanič
Tom Levanič in OpenAIREJuan Carlos Linares;
Juan Carlos Linares
Juan Carlos Linares in OpenAIREKoen Kramer;
Koen Kramer
Koen Kramer in OpenAIRETuomas Aakala;
+33 AuthorsTuomas Aakala
Tuomas Aakala in OpenAIRETom Levanič;
Tom Levanič
Tom Levanič in OpenAIREJuan Carlos Linares;
Juan Carlos Linares
Juan Carlos Linares in OpenAIREKoen Kramer;
Koen Kramer
Koen Kramer in OpenAIRETuomas Aakala;
Andreas Papadopoulos;Tuomas Aakala
Tuomas Aakala in OpenAIREGabriel Sangüesa-Barreda;
Gabriel Sangüesa-Barreda
Gabriel Sangüesa-Barreda in OpenAIREChristof Bigler;
Dejan Stojanović;Christof Bigler
Christof Bigler in OpenAIREKatarina Čufar;
Katarina Čufar
Katarina Čufar in OpenAIRETamir Klein;
Tamir Klein
Tamir Klein in OpenAIREJordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIRESteven Jansen;
Laurel J. Haavik; Mariano M. Amoroso;Steven Jansen
Steven Jansen in OpenAIRELucía DeSoto;
Lucía DeSoto;Lucía DeSoto
Lucía DeSoto in OpenAIREGuillermo Gea-Izquierdo;
Guillermo Gea-Izquierdo
Guillermo Gea-Izquierdo in OpenAIREJ. Julio Camarero;
J. Julio Camarero
J. Julio Camarero in OpenAIREThomas Kitzberger;
Thomas Kitzberger; Sten Gillner;Thomas Kitzberger
Thomas Kitzberger in OpenAIREBrigitte Rohner;
Brigitte Rohner; Frank J. Sterck;Brigitte Rohner
Brigitte Rohner in OpenAIREMaxime Cailleret;
Maxime Cailleret; Maxime Cailleret;Maxime Cailleret
Maxime Cailleret in OpenAIREMaria Laura Suarez;
Maria Laura Suarez
Maria Laura Suarez in OpenAIRERicardo Villalba;
Ricardo Villalba
Ricardo Villalba in OpenAIREVyacheslav I. Kharuk;
Vyacheslav I. Kharuk;Vyacheslav I. Kharuk
Vyacheslav I. Kharuk in OpenAIREHarri Mäkinen;
Harri Mäkinen
Harri Mäkinen in OpenAIREWalter Oberhuber;
Walter Oberhuber
Walter Oberhuber in OpenAIREJeffrey M. Kane;
Jeffrey M. Kane
Jeffrey M. Kane in OpenAIREElisabeth M. R. Robert;
Elisabeth M. R. Robert;Elisabeth M. R. Robert
Elisabeth M. R. Robert in OpenAIREAna-Maria Hereş;
Ana-Maria Hereş
Ana-Maria Hereş in OpenAIREAbstractSevere droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-02523145/documentData sources: Hyper Article en LigneDigital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BYFull-Text: http://zaguan.unizar.es/record/89733Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABDigital repository of Slovenian research organizationsArticle . 2020Data sources: Digital repository of Slovenian research organizationsWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-14300-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 277 citations 277 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 24visibility views 24 download downloads 36 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-02523145/documentData sources: Hyper Article en LigneDigital Repository of University of Zaragoza (ZAGUAN)Article . 2020License: CC BYFull-Text: http://zaguan.unizar.es/record/89733Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABDigital repository of Slovenian research organizationsArticle . 2020Data sources: Digital repository of Slovenian research organizationsWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-14300-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Authors:Wu-Bing Xu;
Wu-Bing Xu
Wu-Bing Xu in OpenAIREWen-Yong Guo;
Wen-Yong Guo
Wen-Yong Guo in OpenAIREJosep M. Serra-Diaz;
Josep M. Serra-Diaz
Josep M. Serra-Diaz in OpenAIREFranziska Schrodt;
+55 AuthorsFranziska Schrodt
Franziska Schrodt in OpenAIREWu-Bing Xu;
Wu-Bing Xu
Wu-Bing Xu in OpenAIREWen-Yong Guo;
Wen-Yong Guo
Wen-Yong Guo in OpenAIREJosep M. Serra-Diaz;
Josep M. Serra-Diaz
Josep M. Serra-Diaz in OpenAIREFranziska Schrodt;
Franziska Schrodt
Franziska Schrodt in OpenAIREWolf L. Eiserhardt;
Wolf L. Eiserhardt
Wolf L. Eiserhardt in OpenAIREBrian J. Enquist;
Brian J. Enquist
Brian J. Enquist in OpenAIREBrian S. Maitner;
Cory Merow; Cyrille Violle;Brian S. Maitner
Brian S. Maitner in OpenAIREMadhur Anand;
Madhur Anand
Madhur Anand in OpenAIREMichaël Belluau;
Michaël Belluau
Michaël Belluau in OpenAIREHans Henrik Bruun;
Hans Henrik Bruun
Hans Henrik Bruun in OpenAIREChaeho Byun;
Chaeho Byun
Chaeho Byun in OpenAIREJane A. Catford;
Jane A. Catford
Jane A. Catford in OpenAIREBruno E. L. Cerabolini;
Bruno E. L. Cerabolini
Bruno E. L. Cerabolini in OpenAIREEduardo Chacón-Madrigal;
Eduardo Chacón-Madrigal
Eduardo Chacón-Madrigal in OpenAIREDaniela Ciccarelli;
Daniela Ciccarelli
Daniela Ciccarelli in OpenAIREJ. Hans C. Cornelissen;
Anh Tuan Dang-Le;J. Hans C. Cornelissen
J. Hans C. Cornelissen in OpenAIREAngel de Frutos;
Angel de Frutos
Angel de Frutos in OpenAIREArildo S. Dias;
Arildo S. Dias
Arildo S. Dias in OpenAIREAelton B. Giroldo;
Aelton B. Giroldo
Aelton B. Giroldo in OpenAIREAlvaro G. Gutiérrez;
Alvaro G. Gutiérrez
Alvaro G. Gutiérrez in OpenAIREWesley Hattingh;
Wesley Hattingh
Wesley Hattingh in OpenAIRETianhua He;
Tianhua He
Tianhua He in OpenAIREPeter Hietz;
Peter Hietz
Peter Hietz in OpenAIRENate Hough-Snee;
Nate Hough-Snee
Nate Hough-Snee in OpenAIRESteven Jansen;
Steven Jansen
Steven Jansen in OpenAIREJens Kattge;
Benjamin Komac;Jens Kattge
Jens Kattge in OpenAIRENathan J. B. Kraft;
Nathan J. B. Kraft
Nathan J. B. Kraft in OpenAIREKoen Kramer;
Koen Kramer
Koen Kramer in OpenAIRESandra Lavorel;
Sandra Lavorel
Sandra Lavorel in OpenAIREChristopher H. Lusk;
Christopher H. Lusk
Christopher H. Lusk in OpenAIREAdam R. Martin;
Adam R. Martin
Adam R. Martin in OpenAIREKe-Ping Ma;
Ke-Ping Ma
Ke-Ping Ma in OpenAIREMaurizio Mencuccini;
Maurizio Mencuccini
Maurizio Mencuccini in OpenAIRESean T. Michaletz;
Vanessa Minden;Sean T. Michaletz
Sean T. Michaletz in OpenAIREAkira S. Mori;
Akira S. Mori
Akira S. Mori in OpenAIREÜlo Niinemets;
Yusuke Onoda;Ülo Niinemets
Ülo Niinemets in OpenAIRERenske E. Onstein;
Renske E. Onstein
Renske E. Onstein in OpenAIREJosep Peñuelas;
Josep Peñuelas
Josep Peñuelas in OpenAIREValério D. Pillar;
Valério D. Pillar
Valério D. Pillar in OpenAIREJan Pisek;
Jan Pisek
Jan Pisek in OpenAIREMatthew J. Pound;
Matthew J. Pound
Matthew J. Pound in OpenAIREBjorn J. M. Robroek;
Brandon Schamp;Bjorn J. M. Robroek
Bjorn J. M. Robroek in OpenAIREMartijn Slot;
Martijn Slot
Martijn Slot in OpenAIREMiao Sun;
Miao Sun
Miao Sun in OpenAIREÊnio E. Sosinski;
Ênio E. Sosinski
Ênio E. Sosinski in OpenAIRENadejda A. Soudzilovskaia;
Nadejda A. Soudzilovskaia
Nadejda A. Soudzilovskaia in OpenAIRENelson Thiffault;
Nelson Thiffault
Nelson Thiffault in OpenAIREPeter M. van Bodegom;
Fons van der Plas;Peter M. van Bodegom
Peter M. van Bodegom in OpenAIREJingming Zheng;
Jingming Zheng
Jingming Zheng in OpenAIREJens-Christian Svenning;
Jens-Christian Svenning
Jens-Christian Svenning in OpenAIREAlejandro Ordonez;
Alejandro Ordonez
Alejandro Ordonez in OpenAIREAs Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Public Library of Science (PLoS) Funded by:NSF | Collaborative Research: E..., NSF | CNH-L: Dynamic Impacts of...NSF| Collaborative Research: Extreme Events and Ecological Acclimation: Scaling from Cells to Ecosystems ,NSF| CNH-L: Dynamic Impacts of Environmental Change and Biomass Harvesting on Woodland Ecosystems and Traditional LivelihoodsAuthors:William R. L. Anderegg;
Adam Wolf; Adriana Arango-Velez;William R. L. Anderegg
William R. L. Anderegg in OpenAIREBrendan Choat;
+10 AuthorsBrendan Choat
Brendan Choat in OpenAIREWilliam R. L. Anderegg;
Adam Wolf; Adriana Arango-Velez;William R. L. Anderegg
William R. L. Anderegg in OpenAIREBrendan Choat;
Brendan Choat
Brendan Choat in OpenAIREDaniel J. Chmura;
Daniel J. Chmura
Daniel J. Chmura in OpenAIRESteven Jansen;
Thomas Kolb; Shan Li;Steven Jansen
Steven Jansen in OpenAIREFrederick Meinzer;
Pilar Pita;Frederick Meinzer
Frederick Meinzer in OpenAIREVíctor Resco de Dios;
John S. Sperry;Víctor Resco de Dios
Víctor Resco de Dios in OpenAIREBrett T. Wolfe;
Stephen Pacala;Brett T. Wolfe
Brett T. Wolfe in OpenAIREClimate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 87 citations 87 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United Kingdom, Australia, Greece, United Kingdom, NetherlandsPublisher:Copernicus GmbH Funded by:EC | AMAZALERT, UKRI | Amazon Integrated Carbon ..., ARC | Future Fellowships - Gran... +2 projectsEC| AMAZALERT ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICA ,ARC| Future Fellowships - Grant ID: FT110100457 ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| Understanding how drought affects the risk of increased mortality in tropical rain forestsAuthors: B. O. Christoffersen; B. O. Christoffersen; M. Gloor;S. Fauset;
+17 AuthorsS. Fauset
S. Fauset in OpenAIREB. O. Christoffersen; B. O. Christoffersen; M. Gloor;S. Fauset;
S. Fauset
S. Fauset in OpenAIREN. M. Fyllas;
N. M. Fyllas
N. M. Fyllas in OpenAIRED. R. Galbraith;
T. R. Baker;D. R. Galbraith
D. R. Galbraith in OpenAIREB. Kruijt;
B. Kruijt
B. Kruijt in OpenAIREL. Rowland;
L. Rowland; R. A. Fisher;L. Rowland
L. Rowland in OpenAIREO. J. Binks;
S. Sevanto;O. J. Binks
O. J. Binks in OpenAIREC. Xu;
S. Jansen;
S. Jansen
S. Jansen in OpenAIREB. Choat;
B. Choat
B. Choat in OpenAIREM. Mencuccini;
M. Mencuccini; N. G. McDowell; P. Meir; P. Meir;M. Mencuccini
M. Mencuccini in OpenAIREhandle: 1885/145278
Abstract. Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ε, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.
CORE arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/145278Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-4227-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu214 citations 214 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/145278Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-4227-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu