- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NetherlandsPublisher:Wiley Cai, Chuang; Li, Gang; Yang, Hailong; Yang, Jiaheng; Liu, Hong; Struik, Paul C.; Luo, Weihong; Yin, Xinyou; Di, Lijun; Guo, Xuanhe; Jiang, Wenyu; Si, Chuanfei; Pan, Genxing; Zhu, Jianguo;doi: 10.1111/gcb.13961
pmid: 29076597
AbstractLeaf photosynthesis of crops acclimates to elevated CO2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free‐air CO2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0–2.0°C). Parameters of the C3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (gs) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO2, elevated temperature, and their combination. The combination of elevated CO2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The gs model significantly underestimated gs under the combination of elevated CO2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled gs–FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of gs hardly improved prediction of leaf photosynthesis under the four combinations of CO2 and temperature. Therefore, the typical procedure that crop models using the FvCB and gs models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 77 citations 77 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NetherlandsPublisher:Wiley Cai, Chuang; Li, Gang; Yang, Hailong; Yang, Jiaheng; Liu, Hong; Struik, Paul C.; Luo, Weihong; Yin, Xinyou; Di, Lijun; Guo, Xuanhe; Jiang, Wenyu; Si, Chuanfei; Pan, Genxing; Zhu, Jianguo;doi: 10.1111/gcb.13961
pmid: 29076597
AbstractLeaf photosynthesis of crops acclimates to elevated CO2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free‐air CO2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0–2.0°C). Parameters of the C3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (gs) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO2, elevated temperature, and their combination. The combination of elevated CO2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The gs model significantly underestimated gs under the combination of elevated CO2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled gs–FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of gs hardly improved prediction of leaf photosynthesis under the four combinations of CO2 and temperature. Therefore, the typical procedure that crop models using the FvCB and gs models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 77 citations 77 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 NetherlandsPublisher:Wiley Paul C. Struik; Rongbing Ni; Haozheng Li; Han Zhang; Baowei Huang; Gang Li; Mingming Dong; Genxing Pan; Xiaoyu Liu; Yaling Zhang; Xuanhe Guo; Xuanhe Guo; Zijuan Liu; Weiping Chen; Xinyou Yin; Chuang Cai; Weihong Luo;doi: 10.1002/fes3.336
AbstractElevated CO2 concentration has been reported to decrease grain nutrient concentrations and thus worsen nutritional deficiency and hidden hunger. One nutritional aspect is mineral content, yet mineral bioavailability can be limited by the presence of phytic acid. Given that future climate scenarios predict elevated global temperature driven by elevated atmospheric CO2 concentrations, we used Temperature by Free‐Air CO2 Enrichment (T‐FACE) field experiments to investigate whether elevated temperature alters the effects of elevated CO2 on grain mineral concentrations, grain mineral yields, and their bioavailability in a range of wheat and rice genotypes. We found that the negative effects of elevated CO2 were compensated for by positive effects of elevated temperature. As a result, the combined elevated CO2 and elevated temperature increased concentrations of some minerals by up to ~15% in both rice and wheat relative to control conditions. Moreover, the combined elevated CO2 and elevated temperature did not significantly change total yields of some minerals despite lower grain yields. The combined CO2 and temperature elevation increased phytic acid concentration in rice by 18.1% but decreased it in wheat by 3.5%. The mineral bioavailability, estimated as the mole ratio of phytic acid to minerals in rice and wheat grains, was limited by the combined CO2 and temperature elevation in only a few cases. Our results indicate that under future climate conditions of elevated temperature and CO2, the nutritional quality of rice and wheat with respect to minerals may remain unchanged.
Food and Energy Secu... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Food and Energy Secu... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 NetherlandsPublisher:Wiley Paul C. Struik; Rongbing Ni; Haozheng Li; Han Zhang; Baowei Huang; Gang Li; Mingming Dong; Genxing Pan; Xiaoyu Liu; Yaling Zhang; Xuanhe Guo; Xuanhe Guo; Zijuan Liu; Weiping Chen; Xinyou Yin; Chuang Cai; Weihong Luo;doi: 10.1002/fes3.336
AbstractElevated CO2 concentration has been reported to decrease grain nutrient concentrations and thus worsen nutritional deficiency and hidden hunger. One nutritional aspect is mineral content, yet mineral bioavailability can be limited by the presence of phytic acid. Given that future climate scenarios predict elevated global temperature driven by elevated atmospheric CO2 concentrations, we used Temperature by Free‐Air CO2 Enrichment (T‐FACE) field experiments to investigate whether elevated temperature alters the effects of elevated CO2 on grain mineral concentrations, grain mineral yields, and their bioavailability in a range of wheat and rice genotypes. We found that the negative effects of elevated CO2 were compensated for by positive effects of elevated temperature. As a result, the combined elevated CO2 and elevated temperature increased concentrations of some minerals by up to ~15% in both rice and wheat relative to control conditions. Moreover, the combined elevated CO2 and elevated temperature did not significantly change total yields of some minerals despite lower grain yields. The combined CO2 and temperature elevation increased phytic acid concentration in rice by 18.1% but decreased it in wheat by 3.5%. The mineral bioavailability, estimated as the mole ratio of phytic acid to minerals in rice and wheat grains, was limited by the combined CO2 and temperature elevation in only a few cases. Our results indicate that under future climate conditions of elevated temperature and CO2, the nutritional quality of rice and wheat with respect to minerals may remain unchanged.
Food and Energy Secu... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Food and Energy Secu... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:Wiley Chuang Cai; Gang Li; Lijun Di; Yunjie Ding; Lin Fu; Xuanhe Guo; Paul C. Struik; Genxing Pan; Haozheng Li; Weiping Chen; Weihong Luo; Xinyou Yin;doi: 10.1111/gcb.14830
pmid: 31505097
AbstractCrops show considerable capacity to adjust their photosynthetic characteristics to seasonal changes in temperature. However, how photosynthesis acclimates to changes in seasonal temperature under future climate conditions has not been revealed. We measured leaf photosynthesis (An) of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) grown under four combinations of two levels of CO2 (ambient and enriched up to 500 µmol/mol) and two levels of canopy temperature (ambient and increased by 1.5–2.0°C) in temperature by free‐air CO2 enrichment (T‐FACE) systems. Parameters of a biochemical C3‐photosynthesis model and of a stomatal conductance (gs) model were estimated for the four conditions and for several crop stages. Some biochemical parameters related to electron transport and most gs parameters showed acclimation to seasonal growth temperature in both crops. The acclimation response did not differ much between wheat and rice, nor among the four treatments of the T‐FACE systems, when the difference in the seasonal growth temperature was accounted for. The relationships between biochemical parameters and leaf nitrogen content were consistent across leaf ranks, developmental stages, and treatment conditions. The acclimation had a strong impact on gs model parameters: when parameter values of a particular stage were used, the model failed to correctly estimate gs values of other stages. Further analysis using the coupled gs–biochemical photosynthesis model showed that ignoring the acclimation effect did not result in critical errors in estimating leaf photosynthesis under future climate, as long as parameter values were measured or derived from data obtained before flowering.
Research@WUR arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:Wiley Chuang Cai; Gang Li; Lijun Di; Yunjie Ding; Lin Fu; Xuanhe Guo; Paul C. Struik; Genxing Pan; Haozheng Li; Weiping Chen; Weihong Luo; Xinyou Yin;doi: 10.1111/gcb.14830
pmid: 31505097
AbstractCrops show considerable capacity to adjust their photosynthetic characteristics to seasonal changes in temperature. However, how photosynthesis acclimates to changes in seasonal temperature under future climate conditions has not been revealed. We measured leaf photosynthesis (An) of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) grown under four combinations of two levels of CO2 (ambient and enriched up to 500 µmol/mol) and two levels of canopy temperature (ambient and increased by 1.5–2.0°C) in temperature by free‐air CO2 enrichment (T‐FACE) systems. Parameters of a biochemical C3‐photosynthesis model and of a stomatal conductance (gs) model were estimated for the four conditions and for several crop stages. Some biochemical parameters related to electron transport and most gs parameters showed acclimation to seasonal growth temperature in both crops. The acclimation response did not differ much between wheat and rice, nor among the four treatments of the T‐FACE systems, when the difference in the seasonal growth temperature was accounted for. The relationships between biochemical parameters and leaf nitrogen content were consistent across leaf ranks, developmental stages, and treatment conditions. The acclimation had a strong impact on gs model parameters: when parameter values of a particular stage were used, the model failed to correctly estimate gs values of other stages. Further analysis using the coupled gs–biochemical photosynthesis model showed that ignoring the acclimation effect did not result in critical errors in estimating leaf photosynthesis under future climate, as long as parameter values were measured or derived from data obtained before flowering.
Research@WUR arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NetherlandsPublisher:Wiley Cai, Chuang; Li, Gang; Yang, Hailong; Yang, Jiaheng; Liu, Hong; Struik, Paul C.; Luo, Weihong; Yin, Xinyou; Di, Lijun; Guo, Xuanhe; Jiang, Wenyu; Si, Chuanfei; Pan, Genxing; Zhu, Jianguo;doi: 10.1111/gcb.13961
pmid: 29076597
AbstractLeaf photosynthesis of crops acclimates to elevated CO2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free‐air CO2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0–2.0°C). Parameters of the C3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (gs) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO2, elevated temperature, and their combination. The combination of elevated CO2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The gs model significantly underestimated gs under the combination of elevated CO2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled gs–FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of gs hardly improved prediction of leaf photosynthesis under the four combinations of CO2 and temperature. Therefore, the typical procedure that crop models using the FvCB and gs models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 77 citations 77 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NetherlandsPublisher:Wiley Cai, Chuang; Li, Gang; Yang, Hailong; Yang, Jiaheng; Liu, Hong; Struik, Paul C.; Luo, Weihong; Yin, Xinyou; Di, Lijun; Guo, Xuanhe; Jiang, Wenyu; Si, Chuanfei; Pan, Genxing; Zhu, Jianguo;doi: 10.1111/gcb.13961
pmid: 29076597
AbstractLeaf photosynthesis of crops acclimates to elevated CO2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free‐air CO2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0–2.0°C). Parameters of the C3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (gs) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO2, elevated temperature, and their combination. The combination of elevated CO2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The gs model significantly underestimated gs under the combination of elevated CO2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled gs–FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of gs hardly improved prediction of leaf photosynthesis under the four combinations of CO2 and temperature. Therefore, the typical procedure that crop models using the FvCB and gs models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 77 citations 77 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 NetherlandsPublisher:Wiley Paul C. Struik; Rongbing Ni; Haozheng Li; Han Zhang; Baowei Huang; Gang Li; Mingming Dong; Genxing Pan; Xiaoyu Liu; Yaling Zhang; Xuanhe Guo; Xuanhe Guo; Zijuan Liu; Weiping Chen; Xinyou Yin; Chuang Cai; Weihong Luo;doi: 10.1002/fes3.336
AbstractElevated CO2 concentration has been reported to decrease grain nutrient concentrations and thus worsen nutritional deficiency and hidden hunger. One nutritional aspect is mineral content, yet mineral bioavailability can be limited by the presence of phytic acid. Given that future climate scenarios predict elevated global temperature driven by elevated atmospheric CO2 concentrations, we used Temperature by Free‐Air CO2 Enrichment (T‐FACE) field experiments to investigate whether elevated temperature alters the effects of elevated CO2 on grain mineral concentrations, grain mineral yields, and their bioavailability in a range of wheat and rice genotypes. We found that the negative effects of elevated CO2 were compensated for by positive effects of elevated temperature. As a result, the combined elevated CO2 and elevated temperature increased concentrations of some minerals by up to ~15% in both rice and wheat relative to control conditions. Moreover, the combined elevated CO2 and elevated temperature did not significantly change total yields of some minerals despite lower grain yields. The combined CO2 and temperature elevation increased phytic acid concentration in rice by 18.1% but decreased it in wheat by 3.5%. The mineral bioavailability, estimated as the mole ratio of phytic acid to minerals in rice and wheat grains, was limited by the combined CO2 and temperature elevation in only a few cases. Our results indicate that under future climate conditions of elevated temperature and CO2, the nutritional quality of rice and wheat with respect to minerals may remain unchanged.
Food and Energy Secu... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Food and Energy Secu... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 NetherlandsPublisher:Wiley Paul C. Struik; Rongbing Ni; Haozheng Li; Han Zhang; Baowei Huang; Gang Li; Mingming Dong; Genxing Pan; Xiaoyu Liu; Yaling Zhang; Xuanhe Guo; Xuanhe Guo; Zijuan Liu; Weiping Chen; Xinyou Yin; Chuang Cai; Weihong Luo;doi: 10.1002/fes3.336
AbstractElevated CO2 concentration has been reported to decrease grain nutrient concentrations and thus worsen nutritional deficiency and hidden hunger. One nutritional aspect is mineral content, yet mineral bioavailability can be limited by the presence of phytic acid. Given that future climate scenarios predict elevated global temperature driven by elevated atmospheric CO2 concentrations, we used Temperature by Free‐Air CO2 Enrichment (T‐FACE) field experiments to investigate whether elevated temperature alters the effects of elevated CO2 on grain mineral concentrations, grain mineral yields, and their bioavailability in a range of wheat and rice genotypes. We found that the negative effects of elevated CO2 were compensated for by positive effects of elevated temperature. As a result, the combined elevated CO2 and elevated temperature increased concentrations of some minerals by up to ~15% in both rice and wheat relative to control conditions. Moreover, the combined elevated CO2 and elevated temperature did not significantly change total yields of some minerals despite lower grain yields. The combined CO2 and temperature elevation increased phytic acid concentration in rice by 18.1% but decreased it in wheat by 3.5%. The mineral bioavailability, estimated as the mole ratio of phytic acid to minerals in rice and wheat grains, was limited by the combined CO2 and temperature elevation in only a few cases. Our results indicate that under future climate conditions of elevated temperature and CO2, the nutritional quality of rice and wheat with respect to minerals may remain unchanged.
Food and Energy Secu... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Food and Energy Secu... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/fes3.336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:Wiley Chuang Cai; Gang Li; Lijun Di; Yunjie Ding; Lin Fu; Xuanhe Guo; Paul C. Struik; Genxing Pan; Haozheng Li; Weiping Chen; Weihong Luo; Xinyou Yin;doi: 10.1111/gcb.14830
pmid: 31505097
AbstractCrops show considerable capacity to adjust their photosynthetic characteristics to seasonal changes in temperature. However, how photosynthesis acclimates to changes in seasonal temperature under future climate conditions has not been revealed. We measured leaf photosynthesis (An) of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) grown under four combinations of two levels of CO2 (ambient and enriched up to 500 µmol/mol) and two levels of canopy temperature (ambient and increased by 1.5–2.0°C) in temperature by free‐air CO2 enrichment (T‐FACE) systems. Parameters of a biochemical C3‐photosynthesis model and of a stomatal conductance (gs) model were estimated for the four conditions and for several crop stages. Some biochemical parameters related to electron transport and most gs parameters showed acclimation to seasonal growth temperature in both crops. The acclimation response did not differ much between wheat and rice, nor among the four treatments of the T‐FACE systems, when the difference in the seasonal growth temperature was accounted for. The relationships between biochemical parameters and leaf nitrogen content were consistent across leaf ranks, developmental stages, and treatment conditions. The acclimation had a strong impact on gs model parameters: when parameter values of a particular stage were used, the model failed to correctly estimate gs values of other stages. Further analysis using the coupled gs–biochemical photosynthesis model showed that ignoring the acclimation effect did not result in critical errors in estimating leaf photosynthesis under future climate, as long as parameter values were measured or derived from data obtained before flowering.
Research@WUR arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:Wiley Chuang Cai; Gang Li; Lijun Di; Yunjie Ding; Lin Fu; Xuanhe Guo; Paul C. Struik; Genxing Pan; Haozheng Li; Weiping Chen; Weihong Luo; Xinyou Yin;doi: 10.1111/gcb.14830
pmid: 31505097
AbstractCrops show considerable capacity to adjust their photosynthetic characteristics to seasonal changes in temperature. However, how photosynthesis acclimates to changes in seasonal temperature under future climate conditions has not been revealed. We measured leaf photosynthesis (An) of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) grown under four combinations of two levels of CO2 (ambient and enriched up to 500 µmol/mol) and two levels of canopy temperature (ambient and increased by 1.5–2.0°C) in temperature by free‐air CO2 enrichment (T‐FACE) systems. Parameters of a biochemical C3‐photosynthesis model and of a stomatal conductance (gs) model were estimated for the four conditions and for several crop stages. Some biochemical parameters related to electron transport and most gs parameters showed acclimation to seasonal growth temperature in both crops. The acclimation response did not differ much between wheat and rice, nor among the four treatments of the T‐FACE systems, when the difference in the seasonal growth temperature was accounted for. The relationships between biochemical parameters and leaf nitrogen content were consistent across leaf ranks, developmental stages, and treatment conditions. The acclimation had a strong impact on gs model parameters: when parameter values of a particular stage were used, the model failed to correctly estimate gs values of other stages. Further analysis using the coupled gs–biochemical photosynthesis model showed that ignoring the acclimation effect did not result in critical errors in estimating leaf photosynthesis under future climate, as long as parameter values were measured or derived from data obtained before flowering.
Research@WUR arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu