- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models.This dataset describes the data generated in a literature synthesis, covering 358 study sites on vegetation or glacier (>=60°N latitude), which contained surface energy budget observations. The literature synthesis comprised 148 publications searched on the ISI Web of Science Core Collection.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Malaysia, Malaysia, AustraliaPublisher:Wiley Funded by:ARC | Fire Scar Impacts on Surf..., ARC | eScience and Climate: Usi..., ARC | Impacts of deforestation ... +4 projectsARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| eScience and Climate: Using Grid technology to build capacity in studies of Australian climate variability ,ARC| Impacts of deforestation and afforestation on greenhouse gas emissions, and carbon and water resources in the Daly River catchment, north Australia ,ARC| Discovery Projects - Grant ID: DP130101566 ,ARC| Integrative assessment of disturbance and land-use change on total greenhouse gas balance and nutrient cycling in savanna ecosystems ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to region ,ARC| Complexity in climate impact assessment: a methodology to address extremesDavid Abramson; Lucas A. Cernusak; Caitlin E. Moore; Stefan K. Arndt; Samantha Grover; Samantha Grover; Derek Eamus; Michael R. Raupach; Lindsay B. Hutley; Stephen J. Livesley; Nigel J. Tapper; Jorg M. Hacker; Andrew Edwards; Simon Scheiter; Peter R. Briggs; Stefan W. Maier; Klaus Goergen; Vanessa Haverd; Petteri Uotila; Mila Bristow; Josep G. Canadell; Jason Beringer; Jason Beringer; Bradleys J. Evans; Jeremy Russell-Smith; Benedikt J. Fest; Amanda H. Lynch; Amanda H. Lynch; Kasturi Devi Kanniah; Kasturi Devi Kanniah;AbstractSavanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2015Full-Text: http://dx.doi.org/10.1111/gcb.12686Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 89 citations 89 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2015Full-Text: http://dx.doi.org/10.1111/gcb.12686Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Italy, United States, Italy, Netherlands, United Kingdom, Germany, Italy, BelgiumPublisher:Wiley Publicly fundedFunded by:EC | GHG EUROPEEC| GHG EUROPENiu, S.; Luo, Y.; Fei, S.; Yuan, W.; Schimel, D.; Ammann, C.; Arain, M. A.; Arneth, A.; Aubinet, M.; Bar, A.; Beringer, J.; Bernhofer, C.; Black, A. T.; Buchmann, N.; Cescatti, A.; Chen, J.; Davis, K. J.; Dellwik, E.; Desai, A. R.; Dolman, H.; Etzold, S.; Francois, L.; Gielen, B.; Goldstein, A.; Groenendijk, M.; Gu, L.; Hanan, N.; Helfter, C.; Hirano, T.; Hollinger, D. Y.; Jones, M. B.; Kiely, G.; Kolb, T. E.; Kutsch, W. L.; Lafleur, P.; Law, B. E.; Lawrence, D. M.; Li, L.; Lindroth, A.; Litvak, M.; Loustau, D.; Lund, M.; Ma, S.; Marek, M.; Martin, T. A.; Matteucci, G.; Migliavacca, M.; Montagnani, L.; Moors, E.; Munger, J. W.; Noormets, A.; Oechel, W.; Olejnik, J.; Paw, U.; Pilegaard, K.; Rambal, S.; Raschi, A.; Saleska, S.; Scott, R. L.; Seufert, G.; Spano, D.; Stoy, P.; Sutton, M. A.; Varlagin, A.; Vesala, T.; Weng, E.; Wohlfahrt, G.; Yang, B.; Zhang, Z.; Zhou, X.; Gianelle, Damiano;• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 121 citations 121 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Lindsay B. Hutley; Simon Scheiter; Jason Beringer; Jason Beringer; Steven I. Higgins;doi: 10.1111/nph.13130
pmid: 25388673
Summary Tropical savannas cover a large proportion of the Earth's land surface and many people are dependent on the ecosystem services that savannas supply. Their sustainable management is crucial. Owing to the complexity of savanna vegetation dynamics, climate change and land use impacts on savannas are highly uncertain. We used a dynamic vegetation model, the adaptive dynamic global vegetation model (aDGVM), to project how climate change and fire management might influence future vegetation in northern Australian savannas. Under future climate conditions, vegetation can store more carbon than under ambient conditions. Changes in rainfall seasonality influence future carbon storage but do not turn vegetation into a carbon source, suggesting that CO2 fertilization is the main driver of vegetation change. The application of prescribed fires with varying return intervals and burning season influences vegetation and fire impacts. Carbon sequestration is maximized with early dry season fires and long fire return intervals, while grass productivity is maximized with late dry season fires and intermediate fire return intervals. The study has implications for management policy across Australian savannas because it identifies how fire management strategies may influence grazing yield, carbon sequestration and greenhouse gas emissions. This knowledge is crucial to maintaining important ecosystem services of Australian savannas.
New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Finland, Australia, DenmarkPublisher:American Geophysical Union (AGU) Funded by:ARC | Methane uptake of forest ..., ARC | MEGA - Mobile Ecosystem G..., ARC | Patterns and processes of... +2 projectsARC| Methane uptake of forest soils ,ARC| MEGA - Mobile Ecosystem Gas-exchange Analyser for Australian landscapes ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to region ,ARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| Discovery Projects - Grant ID: DP130101566Mallick, Kaniska; Toivonen, Erika; Trebs, Ivonne; Boegh, Eva; Cleverly, James; Eamus, Derek; Koivusalo, Harri; Drewry, Darren; Arndt, Stefan K.; Griebel, Anne; Beringer, Jason; Garcia; Monica;doi: 10.1029/2017wr021357
AbstractThermal infrared sensing of evapotranspiration (E) through surface energy balance (SEB) models is challenging due to uncertainties in determining the aerodynamic conductance (gA) and due to inequalities between radiometric (TR) and aerodynamic temperatures (T0). We evaluated a novel analytical model, the Surface Temperature Initiated Closure (STIC1.2), that physically integrates TR observations into a combined Penman‐Monteith Shuttleworth‐Wallace (PM‐SW) framework for directly estimating E, and overcoming the uncertainties associated with T0 and gA determination. An evaluation of STIC1.2 against high temporal frequency SEB flux measurements across an aridity gradient in Australia revealed a systematic error of 10–52% in E from mesic to arid ecosystem, and low systematic error in sensible heat fluxes (H) (12–25%) in all ecosystems. Uncertainty in TR versus moisture availability relationship, stationarity assumption in surface emissivity, and SEB closure corrections in E were predominantly responsible for systematic E errors in arid and semi‐arid ecosystems. A discrete correlation (r) of the model errors with observed soil moisture variance (r = 0.33–0.43), evaporative index (r = 0.77–0.90), and climatological dryness (r = 0.60–0.77) explained a strong association between ecohydrological extremes and TR in determining the error structure of STIC1.2 predicted fluxes. Being independent of any leaf‐scale biophysical parameterization, the model might be an important value addition in working group (WG2) of the Australian Energy and Water Exchange (OzEWEX) research initiative which focuses on observations to evaluate and compare biophysical models of energy and water cycle components.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1029/2017WR021357Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017wr021357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1029/2017WR021357Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017wr021357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley John Beardall; Jason Beringer; Ross M. Thompson; Michael R. Grace; Paula Sardiña;doi: 10.1111/ele.12202
pmid: 24165435
AbstractUnderstanding effects of climate change on ecosystems will require a diverse range of approaches. We proposed using downscaled climate models to generate realistic weather scenarios as experimental treatments. Kreyling et al. propose a gradient approach to determine the shape of response functions. These approaches are different, but highly complementary.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 France, Italy, Russian Federation, FrancePublisher:IOP Publishing Minseok Kang; Taku M. Saitoh; Tomo'omi Kumagai; Tomo'omi Kumagai; Takashi Hirano; Eugénie S. Euskirchen; Keisuke Ono; Kazuhito Ichii; Kazuhito Ichii; Andrej Varlagin; Takanori Shimizu; Dennis D. Baldocchi; Lutz Merbold; Yojiro Matsuura; M. Syndonia Bret-Harte; Yoshiko Kosugi; Joon Kim; Takeshi Ohta; Jason Beringer; Luca Belelli Marchesini; Yukio Yasuda; Yasuko Mizoguchi; Hideki Kobayashi; Satoru Takanashi; Kentaro Takagi; Takashi Machimura; Masahito Ueyama;handle: 10568/125068 , 10449/64408
Abstract Rising atmospheric CO2 concentration ([CO2]) enhances photosynthesis and reduces transpiration at the leaf, ecosystem, and global scale via the CO2 fertilization effect. The CO2 fertilization effect is among the most important processes for predicting the terrestrial carbon budget and future climate, yet it has been elusive to quantify. For evaluating the CO2 fertilization effect on land photosynthesis and transpiration, we developed a technique that isolated this effect from other confounding effects, such as changes in climate, using a noisy time series of observed land-atmosphere CO2 and water vapor exchange. Here, we evaluate the magnitude of this effect from 2000 to 2014 globally based on constraint optimization of gross primary productivity (GPP) and evapotranspiration in a canopy photosynthesis model over 104 global eddy-covariance stations. We found a consistent increase of GPP (0.138 ± 0.007% ppm−1; percentile per rising ppm of [CO2]) and a concomitant decrease in transpiration (−0.073% ± 0.006% ppm−1) due to rising [CO2]. Enhanced GPP from CO2 fertilization after the baseline year 2000 is, on average, 1.2% of global GPP, 12.4 g C m−2 yr−1 or 1.8 Pg C yr−1 at the years from 2001 to 2014. Our result demonstrates that the current increase in [CO2] could potentially explain the recent land CO2 sink at the global scale.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125068Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64408Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab79e5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125068Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64408Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab79e5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In-situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. Therefore, we here provide four datasets comprising:1. Harmonized, standardized and aggregated in situ observations of SEB components at 64 vegetated and glaciated sites north of 60° latitude, in the time period 1994-20212. A description of all study sites and associated environmental conditions, including the vegetation types, which correspond to the classification of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019).3. Data generated in a literature synthesis from 358 study sites on vegetation or glacier (>=60°N latitude) covered by 148 publications.4. Metadata, including data contributor information and measurement heights of variables associated with Oehri et al. 2022. Code underlying the dataset and publication is available in a Github repository and can be accessed at: https://github.com/oehrij/ArcticSEBSynthesis
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;List of Ameriflux, AON and FLUXNET sites contained in this dataset and their corresponding siteid's and doi's: CA-SCB (https://doi.org/10.17190/AMF/1498754), FI-Lom (https://doi.org/10.18140/FLX/1440228), GL-NuF (https://doi.org/10.18140/FLX/1440222), GL-ZaF (https://doi.org/10.18140/FLX/1440223), GL-ZaH (https://doi.org/10.18140/FLX/1440224), RU-Che (https://doi.org/10.18140/FLX/1440181), RU-Cok (https://doi.org/10.18140/FLX/1440182), RU-Sam (https://doi.org/10.18140/FLX/1440185), RU-Tks (https://doi.org/10.18140/FLX/1440244), RU-Vrk (https://doi.org/10.18140/FLX/1440245), SE-St1 (https://doi.org/10.18140/FLX/1440187), SJ-Adv (https://doi.org/10.18140/FLX/1440241), SJ-Blv (https://doi.org/10.18140/FLX/1440242), US-A03 (https://doi.org/10.17190/AMF/1498752), US-A10 (https://doi.org/10.17190/AMF/1498753), US-An1 (https://doi.org/10.17190/AMF/1246142), US-An2 (https://doi.org/10.17190/AMF/1246143), US-An3 (https://doi.org/10.17190/AMF/1246144), US-Atq (https://doi.org/10.17190/AMF/1246029), US-Brw (https://doi.org/10.17190/AMF/1246041), US-EML (https://doi.org/10.17190/AMF/1418678), US-HVa (https://doi.org/10.17190/AMF/1246064), US-ICh (https://doi.org/10.17190/AMF/1246133), US-ICs (https://doi.org/10.17190/AMF/1246130), US-ICt (https://doi.org/10.17190/AMF/1246131), US-Ivo (https://doi.org/10.17190/AMF/1246067), US-NGB (https://doi.org/10.17190/AMF/1436326), US-Upa (https://doi.org/10.17190/AMF/1246108), US-xHE (https://doi.org/10.17190/AMF/1617729), US-xTL (https://doi.org/10.17190/AMF/1617739). Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models.This dataset contains metadata information about surface energy budget components measured at 64 tundra and glacier sites >60° N across the Arctic. This information was taken from the open-access repositories FLUXNET, Ameriflux, AON, GC-Net and PROMICE. The contained datasets are associated with the publication vegetation type as an important predictor of the Arctic Summer Land Surface Energy Budget by Oehri et al. 2022, and intended to support research of surface energy budgets and their relationship with environmental conditions, in particular vegetation characteristics across the terrestrial Arctic.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Louis A. Schipper; Johannes Laubach; Lindsay B. Hutley; David W. Rowlings; Malcolm R. McCaskill; Qiang Yu; Qiang Yu; Qiang Yu; Peter Grace; Susanna Rutledge Jonker; Camilla Vote; Peter Isaac; Derek Eamus; Jeffrey P. Walker; Edoardo Daly; John E. Hunt; Cacilia Ewenz; Phil R. Ward; Jason Beringer; Samantha Grover; Bertrand Teodosio; Liang He; John Webb; David I. Campbell; James Cleverly; Mahrita Harahap; Ivan Schroder;A comprehensive understanding of the effects of agricultural management on climate–crop interactions has yet to emerge. Using a novel wavelet–statistics conjunction approach, we analysed the synchronisation amongst fluxes (net ecosystem exchange NEE, evapotranspiration and sensible heat flux) and seven environmental factors (e.g., air temperature, soil water content) on 19 farm sites across Australia and New Zealand. Irrigation and fertilisation practices improved positive coupling between net ecosystem productivity (NEP = −NEE) and evapotranspiration, as hypothesised. Highly intense management tended to protect against heat stress, especially for irrigated crops in dry climates. By contrast, stress avoidance in the vegetation of tropical and hot desert climates was identified by reverse coupling between NEP and sensible heat flux (i.e., increases in NEP were synchronised with decreases in sensible heat flux). Some environmental factors were found to be under management control, whereas others were fixed as constraints at a given location. Irrigated crops in dry climates (e.g., maize, almonds) showed high predictability of fluxes given only knowledge of fluctuations in climate (R2 > 0.78), and fluxes were nearly as predictable across strongly energy- or water-limited environments (0.60
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2020.107934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2020.107934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models.This dataset describes the data generated in a literature synthesis, covering 358 study sites on vegetation or glacier (>=60°N latitude), which contained surface energy budget observations. The literature synthesis comprised 148 publications searched on the ISI Web of Science Core Collection.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Malaysia, Malaysia, AustraliaPublisher:Wiley Funded by:ARC | Fire Scar Impacts on Surf..., ARC | eScience and Climate: Usi..., ARC | Impacts of deforestation ... +4 projectsARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| eScience and Climate: Using Grid technology to build capacity in studies of Australian climate variability ,ARC| Impacts of deforestation and afforestation on greenhouse gas emissions, and carbon and water resources in the Daly River catchment, north Australia ,ARC| Discovery Projects - Grant ID: DP130101566 ,ARC| Integrative assessment of disturbance and land-use change on total greenhouse gas balance and nutrient cycling in savanna ecosystems ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to region ,ARC| Complexity in climate impact assessment: a methodology to address extremesDavid Abramson; Lucas A. Cernusak; Caitlin E. Moore; Stefan K. Arndt; Samantha Grover; Samantha Grover; Derek Eamus; Michael R. Raupach; Lindsay B. Hutley; Stephen J. Livesley; Nigel J. Tapper; Jorg M. Hacker; Andrew Edwards; Simon Scheiter; Peter R. Briggs; Stefan W. Maier; Klaus Goergen; Vanessa Haverd; Petteri Uotila; Mila Bristow; Josep G. Canadell; Jason Beringer; Jason Beringer; Bradleys J. Evans; Jeremy Russell-Smith; Benedikt J. Fest; Amanda H. Lynch; Amanda H. Lynch; Kasturi Devi Kanniah; Kasturi Devi Kanniah;AbstractSavanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2015Full-Text: http://dx.doi.org/10.1111/gcb.12686Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 89 citations 89 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2015Full-Text: http://dx.doi.org/10.1111/gcb.12686Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Italy, United States, Italy, Netherlands, United Kingdom, Germany, Italy, BelgiumPublisher:Wiley Publicly fundedFunded by:EC | GHG EUROPEEC| GHG EUROPENiu, S.; Luo, Y.; Fei, S.; Yuan, W.; Schimel, D.; Ammann, C.; Arain, M. A.; Arneth, A.; Aubinet, M.; Bar, A.; Beringer, J.; Bernhofer, C.; Black, A. T.; Buchmann, N.; Cescatti, A.; Chen, J.; Davis, K. J.; Dellwik, E.; Desai, A. R.; Dolman, H.; Etzold, S.; Francois, L.; Gielen, B.; Goldstein, A.; Groenendijk, M.; Gu, L.; Hanan, N.; Helfter, C.; Hirano, T.; Hollinger, D. Y.; Jones, M. B.; Kiely, G.; Kolb, T. E.; Kutsch, W. L.; Lafleur, P.; Law, B. E.; Lawrence, D. M.; Li, L.; Lindroth, A.; Litvak, M.; Loustau, D.; Lund, M.; Ma, S.; Marek, M.; Martin, T. A.; Matteucci, G.; Migliavacca, M.; Montagnani, L.; Moors, E.; Munger, J. W.; Noormets, A.; Oechel, W.; Olejnik, J.; Paw, U.; Pilegaard, K.; Rambal, S.; Raschi, A.; Saleska, S.; Scott, R. L.; Seufert, G.; Spano, D.; Stoy, P.; Sutton, M. A.; Varlagin, A.; Vesala, T.; Weng, E.; Wohlfahrt, G.; Yang, B.; Zhang, Z.; Zhou, X.; Gianelle, Damiano;• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 121 citations 121 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2012.04095.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Lindsay B. Hutley; Simon Scheiter; Jason Beringer; Jason Beringer; Steven I. Higgins;doi: 10.1111/nph.13130
pmid: 25388673
Summary Tropical savannas cover a large proportion of the Earth's land surface and many people are dependent on the ecosystem services that savannas supply. Their sustainable management is crucial. Owing to the complexity of savanna vegetation dynamics, climate change and land use impacts on savannas are highly uncertain. We used a dynamic vegetation model, the adaptive dynamic global vegetation model (aDGVM), to project how climate change and fire management might influence future vegetation in northern Australian savannas. Under future climate conditions, vegetation can store more carbon than under ambient conditions. Changes in rainfall seasonality influence future carbon storage but do not turn vegetation into a carbon source, suggesting that CO2 fertilization is the main driver of vegetation change. The application of prescribed fires with varying return intervals and burning season influences vegetation and fire impacts. Carbon sequestration is maximized with early dry season fires and long fire return intervals, while grass productivity is maximized with late dry season fires and intermediate fire return intervals. The study has implications for management policy across Australian savannas because it identifies how fire management strategies may influence grazing yield, carbon sequestration and greenhouse gas emissions. This knowledge is crucial to maintaining important ecosystem services of Australian savannas.
New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Finland, Australia, DenmarkPublisher:American Geophysical Union (AGU) Funded by:ARC | Methane uptake of forest ..., ARC | MEGA - Mobile Ecosystem G..., ARC | Patterns and processes of... +2 projectsARC| Methane uptake of forest soils ,ARC| MEGA - Mobile Ecosystem Gas-exchange Analyser for Australian landscapes ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to region ,ARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional Climate ,ARC| Discovery Projects - Grant ID: DP130101566Mallick, Kaniska; Toivonen, Erika; Trebs, Ivonne; Boegh, Eva; Cleverly, James; Eamus, Derek; Koivusalo, Harri; Drewry, Darren; Arndt, Stefan K.; Griebel, Anne; Beringer, Jason; Garcia; Monica;doi: 10.1029/2017wr021357
AbstractThermal infrared sensing of evapotranspiration (E) through surface energy balance (SEB) models is challenging due to uncertainties in determining the aerodynamic conductance (gA) and due to inequalities between radiometric (TR) and aerodynamic temperatures (T0). We evaluated a novel analytical model, the Surface Temperature Initiated Closure (STIC1.2), that physically integrates TR observations into a combined Penman‐Monteith Shuttleworth‐Wallace (PM‐SW) framework for directly estimating E, and overcoming the uncertainties associated with T0 and gA determination. An evaluation of STIC1.2 against high temporal frequency SEB flux measurements across an aridity gradient in Australia revealed a systematic error of 10–52% in E from mesic to arid ecosystem, and low systematic error in sensible heat fluxes (H) (12–25%) in all ecosystems. Uncertainty in TR versus moisture availability relationship, stationarity assumption in surface emissivity, and SEB closure corrections in E were predominantly responsible for systematic E errors in arid and semi‐arid ecosystems. A discrete correlation (r) of the model errors with observed soil moisture variance (r = 0.33–0.43), evaporative index (r = 0.77–0.90), and climatological dryness (r = 0.60–0.77) explained a strong association between ecohydrological extremes and TR in determining the error structure of STIC1.2 predicted fluxes. Being independent of any leaf‐scale biophysical parameterization, the model might be an important value addition in working group (WG2) of the Australian Energy and Water Exchange (OzEWEX) research initiative which focuses on observations to evaluate and compare biophysical models of energy and water cycle components.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1029/2017WR021357Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017wr021357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1029/2017WR021357Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2017wr021357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley John Beardall; Jason Beringer; Ross M. Thompson; Michael R. Grace; Paula Sardiña;doi: 10.1111/ele.12202
pmid: 24165435
AbstractUnderstanding effects of climate change on ecosystems will require a diverse range of approaches. We proposed using downscaled climate models to generate realistic weather scenarios as experimental treatments. Kreyling et al. propose a gradient approach to determine the shape of response functions. These approaches are different, but highly complementary.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 France, Italy, Russian Federation, FrancePublisher:IOP Publishing Minseok Kang; Taku M. Saitoh; Tomo'omi Kumagai; Tomo'omi Kumagai; Takashi Hirano; Eugénie S. Euskirchen; Keisuke Ono; Kazuhito Ichii; Kazuhito Ichii; Andrej Varlagin; Takanori Shimizu; Dennis D. Baldocchi; Lutz Merbold; Yojiro Matsuura; M. Syndonia Bret-Harte; Yoshiko Kosugi; Joon Kim; Takeshi Ohta; Jason Beringer; Luca Belelli Marchesini; Yukio Yasuda; Yasuko Mizoguchi; Hideki Kobayashi; Satoru Takanashi; Kentaro Takagi; Takashi Machimura; Masahito Ueyama;handle: 10568/125068 , 10449/64408
Abstract Rising atmospheric CO2 concentration ([CO2]) enhances photosynthesis and reduces transpiration at the leaf, ecosystem, and global scale via the CO2 fertilization effect. The CO2 fertilization effect is among the most important processes for predicting the terrestrial carbon budget and future climate, yet it has been elusive to quantify. For evaluating the CO2 fertilization effect on land photosynthesis and transpiration, we developed a technique that isolated this effect from other confounding effects, such as changes in climate, using a noisy time series of observed land-atmosphere CO2 and water vapor exchange. Here, we evaluate the magnitude of this effect from 2000 to 2014 globally based on constraint optimization of gross primary productivity (GPP) and evapotranspiration in a canopy photosynthesis model over 104 global eddy-covariance stations. We found a consistent increase of GPP (0.138 ± 0.007% ppm−1; percentile per rising ppm of [CO2]) and a concomitant decrease in transpiration (−0.073% ± 0.006% ppm−1) due to rising [CO2]. Enhanced GPP from CO2 fertilization after the baseline year 2000 is, on average, 1.2% of global GPP, 12.4 g C m−2 yr−1 or 1.8 Pg C yr−1 at the years from 2001 to 2014. Our result demonstrates that the current increase in [CO2] could potentially explain the recent land CO2 sink at the global scale.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125068Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64408Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab79e5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125068Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64408Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab79e5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In-situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. Therefore, we here provide four datasets comprising:1. Harmonized, standardized and aggregated in situ observations of SEB components at 64 vegetated and glaciated sites north of 60° latitude, in the time period 1994-20212. A description of all study sites and associated environmental conditions, including the vegetation types, which correspond to the classification of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019).3. Data generated in a literature synthesis from 358 study sites on vegetation or glacier (>=60°N latitude) covered by 148 publications.4. Metadata, including data contributor information and measurement heights of variables associated with Oehri et al. 2022. Code underlying the dataset and publication is available in a Github repository and can be accessed at: https://github.com/oehrij/ArcticSEBSynthesis
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;List of Ameriflux, AON and FLUXNET sites contained in this dataset and their corresponding siteid's and doi's: CA-SCB (https://doi.org/10.17190/AMF/1498754), FI-Lom (https://doi.org/10.18140/FLX/1440228), GL-NuF (https://doi.org/10.18140/FLX/1440222), GL-ZaF (https://doi.org/10.18140/FLX/1440223), GL-ZaH (https://doi.org/10.18140/FLX/1440224), RU-Che (https://doi.org/10.18140/FLX/1440181), RU-Cok (https://doi.org/10.18140/FLX/1440182), RU-Sam (https://doi.org/10.18140/FLX/1440185), RU-Tks (https://doi.org/10.18140/FLX/1440244), RU-Vrk (https://doi.org/10.18140/FLX/1440245), SE-St1 (https://doi.org/10.18140/FLX/1440187), SJ-Adv (https://doi.org/10.18140/FLX/1440241), SJ-Blv (https://doi.org/10.18140/FLX/1440242), US-A03 (https://doi.org/10.17190/AMF/1498752), US-A10 (https://doi.org/10.17190/AMF/1498753), US-An1 (https://doi.org/10.17190/AMF/1246142), US-An2 (https://doi.org/10.17190/AMF/1246143), US-An3 (https://doi.org/10.17190/AMF/1246144), US-Atq (https://doi.org/10.17190/AMF/1246029), US-Brw (https://doi.org/10.17190/AMF/1246041), US-EML (https://doi.org/10.17190/AMF/1418678), US-HVa (https://doi.org/10.17190/AMF/1246064), US-ICh (https://doi.org/10.17190/AMF/1246133), US-ICs (https://doi.org/10.17190/AMF/1246130), US-ICt (https://doi.org/10.17190/AMF/1246131), US-Ivo (https://doi.org/10.17190/AMF/1246067), US-NGB (https://doi.org/10.17190/AMF/1436326), US-Upa (https://doi.org/10.17190/AMF/1246108), US-xHE (https://doi.org/10.17190/AMF/1617729), US-xTL (https://doi.org/10.17190/AMF/1617739). Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models.This dataset contains metadata information about surface energy budget components measured at 64 tundra and glacier sites >60° N across the Arctic. This information was taken from the open-access repositories FLUXNET, Ameriflux, AON, GC-Net and PROMICE. The contained datasets are associated with the publication vegetation type as an important predictor of the Arctic Summer Land Surface Energy Budget by Oehri et al. 2022, and intended to support research of surface energy budgets and their relationship with environmental conditions, in particular vegetation characteristics across the terrestrial Arctic.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Louis A. Schipper; Johannes Laubach; Lindsay B. Hutley; David W. Rowlings; Malcolm R. McCaskill; Qiang Yu; Qiang Yu; Qiang Yu; Peter Grace; Susanna Rutledge Jonker; Camilla Vote; Peter Isaac; Derek Eamus; Jeffrey P. Walker; Edoardo Daly; John E. Hunt; Cacilia Ewenz; Phil R. Ward; Jason Beringer; Samantha Grover; Bertrand Teodosio; Liang He; John Webb; David I. Campbell; James Cleverly; Mahrita Harahap; Ivan Schroder;A comprehensive understanding of the effects of agricultural management on climate–crop interactions has yet to emerge. Using a novel wavelet–statistics conjunction approach, we analysed the synchronisation amongst fluxes (net ecosystem exchange NEE, evapotranspiration and sensible heat flux) and seven environmental factors (e.g., air temperature, soil water content) on 19 farm sites across Australia and New Zealand. Irrigation and fertilisation practices improved positive coupling between net ecosystem productivity (NEP = −NEE) and evapotranspiration, as hypothesised. Highly intense management tended to protect against heat stress, especially for irrigated crops in dry climates. By contrast, stress avoidance in the vegetation of tropical and hot desert climates was identified by reverse coupling between NEP and sensible heat flux (i.e., increases in NEP were synchronised with decreases in sensible heat flux). Some environmental factors were found to be under management control, whereas others were fixed as constraints at a given location. Irrigated crops in dry climates (e.g., maize, almonds) showed high predictability of fluxes given only knowledge of fluctuations in climate (R2 > 0.78), and fluxes were nearly as predictable across strongly energy- or water-limited environments (0.60
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2020.107934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2020.107934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu