Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
6 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: John M. Littleton; Louisa Patrikiou-Caberos; orcid Marina A. Lynch;
    Marina A. Lynch
    ORCID
    Harvested from ORCID Public Data File

    Marina A. Lynch in OpenAIRE
    Christine Leroy; +1 Authors

    The aggregation of gel-filtered human platelets induced by A23187 is very sensitive to inhibition by ethanol. Similarly when platelets preloaded with [3H]5-hydroxytryptamine ([3H]5HT) are studied in a superfusion system under conditions where aggregation is likely (high platelet density, presence of Ca2+) the rate of release of [3H]5HT induced by A23187 is reduced by the presence of ethanol. However when platelet aggregation is less likely (low platelet density, absence of Ca2+) ethanol does not reduce the rate of [3H]5HT efflux induced by A23187 in superfused platelets. In addition, in contrast to the effects of ethanol on platelet aggregation, the transformation of human red cells to echinocytes induced by A23187 is accelerated by the presence of ethanol. Similarly the increased efflux of 3H from superfused rat striatal slices preloaded with [3H]dopamine which is produced by A23187 is potentiated by ethanol. It is concluded that the inhibitory effect of ethanol on the action of A23187 may be confined to platelet aggregation. This may be because the mechanisms of action of either A23187 or ethanol on platelet aggregation differ from those on other cell functions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biochemical Pharmacology
    Article . 1983 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    6
    citations6
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biochemical Pharmacology
      Article . 1983 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Marina A. Lynch;
    Marina A. Lynch
    ORCID
    Harvested from ORCID Public Data File

    Marina A. Lynch in OpenAIRE
    John M. Littleton;

    The inhibitory effect of ethanol on neurotransmitter release has been suggested to be due to either reduced Ca2+ entry or increased removal of free intracellular Ca2+ from the synapse. The use of the Ca2+ ionophore, A23187, to allow direct access of external Ca2+ to the presynaptic interior should help to determine which of these two factors is the more important, as ethanol should inhibit A23187-induced release of transmitter only if increased Ca2+ removal from the synapse is important. Here we show in rat striatal slices that, although 3H-dopamine release evoked by depolarization with 40 mM K+ is inhibited by 50 mM ethanol, the release evoked by A23187 is enhanced by the presence of ethanol in vitro. The results suggest that ethanol reduces depolarization-induced transmitter release by reducing Ca2+ entry to the presynaptic terminal. However, for brain slices taken from rats made tolerant to ethanol, 3H-dopamine release in the absence of ethanol showed altered characteristics; both K+ depolarization and A23187 released a significantly greater fraction of 3H-dopamine from these slices than from controls. Thus tolerance to the inhibitory effect of ethanol on release may develop by a mechanism involving increased sensitivity of the terminal to Ca2+ entry.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature
    Article . 1983 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    Nature
    Article . 1983
    addClaim
    105
    citations105
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature
      Article . 1983 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      Nature
      Article . 1983
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: D. Samuel; orcid Marina A. Lynch;
    Marina A. Lynch
    ORCID
    Harvested from ORCID Public Data File

    Marina A. Lynch in OpenAIRE
    J.M. Littleton;

    The presence of ethanol, 100 microM, in the superfusate enhanced the spontaneous release of previously uptaken [3H]-dopamine from slices of rat corpus striatum, but produced a small inhibition of K+-stimulated release. The concomitant presence of picrotoxin, 10 microM, in the superfusate prevented the enhancement of spontaneous release of [3H]-dopamine by ethanol with equivocal effects on K+-stimulated release. When present in the superfusate alone picrotoxin had no effect on [3H]-dopamine release.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuropharmacologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neuropharmacology
    Article . 1983 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    14
    citations14
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuropharmacologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Neuropharmacology
      Article . 1983 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: C. Pagonis; D. Samuel; orcid Marina A. Lynch;
    Marina A. Lynch
    ORCID
    Harvested from ORCID Public Data File

    Marina A. Lynch in OpenAIRE
    J.M. Littleton;

    Compared to preparations from control animals, superfused striatal slice preparations from brains of rats treated chronically with ethanol released a significantly greater fraction of stored [3H] dopamine on depolarisation in 40 mM K+. Similarly, the electrically-evoked release of [3H]-norepinephrine from cortical slices and of [3H]-dopamine from striatal slices is also increased, although with this mechanism of depolarisation the change is significant only in the case of [3H] norepinephrine release. In contrast to this tendency to enhancement of Ca2+-dependent depolarisation-induced release, a reduced fraction of stored [3H]-catecholamines was released from these preparations by the indirect sympathomimetics tyramine and (+)-amphetamine. The catecholamine release induced by these indirect sympathomimetics is largely independent of external Ca2+ and the results are interpreted as suggesting that chronic alcohol treatment changes the distribution of catecholamine neurotransmitters between storage pools in the nerve terminal which do or do not require Ca2+ entry for release.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 1985 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 1985
    addClaim
    8
    citations8
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 1985 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 1985
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Deborah Samuel; J.M. Littleton; orcid Marina A. Lynch;
    Marina A. Lynch
    ORCID
    Harvested from ORCID Public Data File

    Marina A. Lynch in OpenAIRE

    Ethanol, 50 mM, in vitro inhibited the release of [3H]dopamine ([3H]DA) induced by depolarisation with 40 mM K+ from slices of corpus striatum of the rat. In contrast, the release of [3H]DA induced by the Ca2+ ionophore (A23187) was enhanced by the presence of ethanol in vitro. When similar preparations were obtained from brains of rats which had received ethanol in vivo chronically by inhalation for 5-7 days the characteristics of release of [3H]DA were altered. Thus, the inhibitory effect of ethanol in vitro on release induced by K+-depolarisation was lost, as was the enhancing effect of ethanol on the release induced by A23187. When release of [3H]DA was studied in the absence of added ethanol the fraction of stored 3H released either by K+-depolarisation or by A23187 was increased in the preparations from animals which had received ethanol in vivo. Similar changes in release induced by A23187, though of lesser magnitude, could be seen in rats which had received ethanol acutely (3 g kg-1 i.p.; 30 min). An even greater fraction of [3H]DA was released by A23187 in preparations from rats which had been made physically dependent on ethanol. These changes in the release characteristics of [3H]DA were still apparent in animals undergoing a physical syndrome of withdrawal from ethanol. The results are discussed in relation to the cellular basis for the development of tolerance to and dependence on ethanol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuropharmacologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neuropharmacology
    Article . 1985 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    13
    citations13
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuropharmacologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Neuropharmacology
      Article . 1985 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: J.M. Littleton; E.R. Archer; orcid Marina A. Lynch;
    Marina A. Lynch
    ORCID
    Harvested from ORCID Public Data File

    Marina A. Lynch in OpenAIRE
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biochemical Pharmacology
    Article . 1986 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    13
    citations13
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biochemical Pharmacology
      Article . 1986 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph