- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 Denmark, Finland, Australia, Australia, New ZealandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSF | Collaborative LTREB Propo..., NSF | CAREER: Understanding het...NSF| Collaborative LTREB Proposal: Will increases in dissolved organic matter accelerate a shift in trophic status through anoxia-driven positive feedbacks in an oligotrophic lake? ,NSF| CAREER: Understanding heterogeneity in lake biogeochemistry across time and spaceMarcel A. K. Jansen; Anthony L. Andrady; Janet F. Bornman; Pieter J. Aucamp; Alkiviadis F. Bais; Anastazia T. Banaszak; Paul W. Barnes; Germar H. Bernhard; Laura S. Bruckman; Rosa Busquets; Donat-P. Häder; Mark L. Hanson; Anu M. Heikkilä; Samuel Hylander; Robyn M. Lucas; Roy Mackenzie; Sasha Madronich; Patrick J. Neale; Rachel E. Neale; Catherine M. Olsen; Rachele Ossola; Krishna K. Pandey; Irina Petropavlovskikh; Laura E. Revell; Sharon A. Robinson; T. Matthew Robson; Kevin C. Rose; Keith R. Solomon; Mads P. Sulbæk Andersen; Barbara Sulzberger; Timothy J. Wallington; Qing-Wei Wang; Sten-Åke Wängberg; Christopher C. White; Antony R. Young; Richard G. Zepp; Liping Zhu;AbstractThis Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Canterbury, Christchurch: UC Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-024-00552-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Canterbury, Christchurch: UC Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-024-00552-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Report , Other literature type 2025Embargo end date: 01 Jan 2025 Denmark, Germany, Finland, Switzerland, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | SOCLIM, UKRI | VIGILANT : Vital IntelliG..., ARC | Special Research Initiati...EC| SOCLIM ,UKRI| VIGILANT : Vital IntelliGence to Investigate ILlegAl DisiNformaTion ,ARC| Special Research Initiatives - Grant ID: SR200100005Patrick J. Neale; Samuel Hylander; Anastazia T. Banaszak; Donat-P. Häder; Kevin C. Rose; Davide Vione; Sten-Åke Wängberg; Marcel A. K. Jansen; Rosa Busquets; Mads P. Sulbæk Andersen; Sasha Madronich; Mark L. Hanson; Tamara Schikowski; Keith R. Solomon; Barbara Sulzberger; Timothy J. Wallington; Anu M. Heikkilä; Krishna K. Pandey; Anthony L. Andrady; Laura S. Bruckman; Christopher C. White; Liping Zhu; Germar H. Bernhard; Alkiviadis Bais; Pieter J. Aucamp; Gabriel Chiodo; Raúl R. Cordero; Irina Petropavlovskikh; Rachel E. Neale; Catherine M. Olsen; Simon Hales; Aparna Lal; Gareth Lingham; Lesley E. Rhodes; Antony R. Young; T. Matthew Robson; Sharon A. Robinson; Paul W. Barnes; Janet F. Bornman; Anna B. Harper; Hanna Lee; Roy Mackenzie Calderón; Rachele Ossola; Nigel D. Paul; Laura E. Revell; Qing-Wei Wang; Richard G. Zepp;doi: 10.1007/s43630-025-00687-x , 10.71747/uow-r3gk326m.28646453 , 10.71747/uow-r3gk326m.28646453.v1 , 10.3929/ethz-b-000728235
pmid: 40095356
pmc: PMC11971163
handle: 10138/594473 , 2318/2068781
doi: 10.1007/s43630-025-00687-x , 10.71747/uow-r3gk326m.28646453 , 10.71747/uow-r3gk326m.28646453.v1 , 10.3929/ethz-b-000728235
pmid: 40095356
pmc: PMC11971163
handle: 10138/594473 , 2318/2068781
Abstract This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) addresses the interacting effects of changes in stratospheric ozone, solar ultraviolet (UV) radiation, and climate on the environment and human health. These include new modelling studies that confirm the benefits of the Montreal Protocol in protecting the stratospheric ozone layer and its role in maintaining a stable climate, both at low and high latitudes. We also provide an update on projected levels of solar UV-radiation during the twenty-first century. Potential environmental consequences of climate intervention scenarios are also briefly discussed, illustrating the large uncertainties of, for example, Stratospheric Aerosol Injection (SAI). Modelling studies predict that, although SAI would cool the Earth’s surface, other climate factors would be affected, including stratospheric ozone depletion and precipitation patterns. The contribution to global warming of replacements for ozone-depleting substances (ODS) are assessed. With respect to the breakdown products of chemicals under the purview of the Montreal Protocol, the risks to ecosystem and human health from the formation of trifluoroacetic acid (TFA) as a degradation product of ODS replacements are currently de minimis. UV-radiation and climate change continue to have complex interactive effects on the environment due largely to human activities. UV-radiation, other weathering factors, and microbial action contribute significantly to the breakdown of plastic waste in the environment, and in affecting transport, fate, and toxicity of the plastics in terrestrial and aquatic ecosystems, and the atmosphere. Sustainability demands continue to drive industry innovations to mitigate environmental consequences of the use and disposal of plastic and plastic-containing materials. Terrestrial ecosystems in alpine and polar environments are increasingly being exposed to enhanced UV-radiation due to earlier seasonal snow and ice melt because of climate warming and extended periods of ozone depletion. Solar radiation, including UV-radiation, also contributes to the decomposition of dead plant material, which affects nutrient cycling, carbon storage, emission of greenhouse gases, and soil fertility. In aquatic ecosystems, loss of ice cover is increasing the area of polar oceans exposed to UV-radiation with possible negative effects on phytoplankton productivity. However, modelling studies of Arctic Ocean circulation suggests that phytoplankton are circulating to progressively deeper ocean layers with less UV irradiation. Human health is also modified by climate change and behaviour patterns, resulting in changes in exposure to UV-radiation with harmful or beneficial effects depending on conditions and skin type. For example, incidence of melanoma has been associated with increased air temperature, which affects time spent outdoors and thus exposure to UV-radiation. Overall, implementation of the Montreal Protocol and its Amendments has mitigated the deleterious effects of high levels of UV-radiation and global warming for both environmental and human health.
Archivio Istituziona... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemPublications at Bielefeld UniversityArticle . 2025License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-025-00687-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemPublications at Bielefeld UniversityArticle . 2025License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-025-00687-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Publicly fundedPaul W. Barnes; Janet F. Bornman; Krishna K. Pandey; Germar H. Bernhard; Alkiviadis F. Bais; Rachel E. Neale; Thomas Matthew Robson; Patrick J. Neale; Craig E. Williamson; Richard G. Zepp; Sasha Madronich; Stephen R. Wilson; Anthony L. Andrady; Anu M. Heikkilä; Sharon A. Robinson;doi: 10.1111/gcb.15841
pmid: 34392574
The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, Finland, Argentina, ArgentinaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:ARC | Discovery Projects - Gran..., AKA | How does the spectrum of ..., SFI | Exploiting narrow-band UV...ARC| Discovery Projects - Grant ID: DP180100113 ,AKA| How does the spectrum of radiation penetrating a deciduous forest canopy influence understorey phenology and interact with climate to affect ecosystem processes ,SFI| Exploiting narrow-band UV-LEDs for Sustainable, Innovative, Technology-Enabled Cropping (UV-SINTEC)Bornman, Janet F; Barnes, Paul W; Robson, T Matthew; Robinson, Sharon A; Jansen, Marcel A.K; Ballare, Carlos L; Flint, Stephan D;Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280-315 nm) is modified by stratospheric ozone dynamics and climate change. Even though stabilisation and projected recovery of stratospheric ozone is expected to curtail future increases in UV-B radiation at the Earth's surface, on-going changes in climate are increasingly exposing plants and animals to novel combinations of UV-B radiation and other climate change factors (e.g., ultraviolet-A and visible radiation, water availability, temperature and elevated carbon dioxide). Climate change is also shifting vegetation cover, geographic ranges of species, and seasonal timing of development, which further modifies exposure to UV-B radiation. Since our last assessment, there has been increased understanding of the underlying mechanisms by which plants perceive UV-B radiation, eliciting changes in growth, development and tolerances of abiotic and biotic factors. However, major questions remain on how UV-B radiation is interacting with other climate change factors to modify the production and quality of crops, as well as important ecosystem processes such as plant and animal competition, pest-pathogen interactions, and the decomposition of dead plant matter (litter). In addition, stratospheric ozone depletion is directly contributing to climate change in the southern hemisphere, such that terrestrial ecosystems in this region are being exposed to altered patterns of precipitation, temperature and fire regimes as well as UV-B radiation. These ozone-driven changes in climate have been implicated in both increases and reductions in the growth, survival and reproduction of plants and animals in Antarctica, South America and New Zealand. In this assessment, we summarise advances in our knowledge of these and other linkages and effects, and identify uncertainties and knowledge gaps that limit our ability to fully evaluate the ecological consequences of these environmental changes on terrestrial ecosystems.
Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallPhotochemical & Photobiological SciencesArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Wollongong, Australia: Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8pp90061b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallPhotochemical & Photobiological SciencesArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Wollongong, Australia: Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8pp90061b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Denmark, AustraliaPublisher:Wiley Publicly fundedMarcel A. K. Jansen; Anthony L. Andrady; Paul W. Barnes; Rosa Busquets; Laura E. Revell; Janet F. Bornman; Pieter J. Aucamp; Alkiviadis F. Bais; Anastazia T. Banaszak; Germar H. Bernhard; Laura S. Bruckman; Donat‐P. Häder; Mark L. Hanson; Anu M. Heikkilä; Samuel Hylander; Robyn M. Lucas; Roy Mackenzie; Sasha Madronich; Patrick J. Neale; Rachel E. Neale; Catherine M. Olsen; Rachele Ossola; Krishna K. Pandey; Irina Petropavlovskikh; Sharon A. Robinson; T. Matthew Robson; Kevin C. Rose; Keith R. Solomon; Mads P. Sulbæk Andersen; Barbara Sulzberger; Timothy J. Wallington; Qing‐Wei Wang; Sten‐Åke Wängberg; Christopher C. White; Antony R. Young; Richard G. Zepp; Liping Zhu;doi: 10.1111/gcb.17279
pmid: 38619007
There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, Australia, Argentina, United Kingdom, Australia, Australia, ArgentinaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:FCT | LA 1FCT| LA 1Barbara Sulzberger; Craig E. Williamson; Richard G. Zepp; Mary Norval; Sasha Madronich; Alkiviadis F. Bais; Amy T. Austin; Nigel D. Paul; Richard McKenzie; Carlos L. Ballaré; Sharon A. Robinson; Donat-P. Häder; Janet F. Bornman; Robyn M. Lucas; Robyn M. Lucas;doi: 10.1038/nclimate2225
handle: 11336/4337 , 1885/25642 , 20.500.11937/9218
The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex interactions between the drivers of climate change and those of stratospheric ozone depletion, and the positive and negative feedbacks among climate, ozone and ultraviolet radiation. These will result in both risks and benefits of exposure to ultraviolet radiation for the environment and human welfare. This Review synthesizes these new insights and their relevance in a world where changes in climate as well as in stratospheric ozone are altering exposure to ultraviolet radiation with largely unknown consequences for the biosphere.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25642Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 299 citations 299 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25642Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Authors: Janet F. Bornman; Paul W. Barnes; Krishna Pandey;pmid: 36753023
Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPhotochemical & Photobiological SciencesOther literature type . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-023-00374-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPhotochemical & Photobiological SciencesOther literature type . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-023-00374-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 Denmark, Finland, Australia, Australia, New ZealandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSF | Collaborative LTREB Propo..., NSF | CAREER: Understanding het...NSF| Collaborative LTREB Proposal: Will increases in dissolved organic matter accelerate a shift in trophic status through anoxia-driven positive feedbacks in an oligotrophic lake? ,NSF| CAREER: Understanding heterogeneity in lake biogeochemistry across time and spaceMarcel A. K. Jansen; Anthony L. Andrady; Janet F. Bornman; Pieter J. Aucamp; Alkiviadis F. Bais; Anastazia T. Banaszak; Paul W. Barnes; Germar H. Bernhard; Laura S. Bruckman; Rosa Busquets; Donat-P. Häder; Mark L. Hanson; Anu M. Heikkilä; Samuel Hylander; Robyn M. Lucas; Roy Mackenzie; Sasha Madronich; Patrick J. Neale; Rachel E. Neale; Catherine M. Olsen; Rachele Ossola; Krishna K. Pandey; Irina Petropavlovskikh; Laura E. Revell; Sharon A. Robinson; T. Matthew Robson; Kevin C. Rose; Keith R. Solomon; Mads P. Sulbæk Andersen; Barbara Sulzberger; Timothy J. Wallington; Qing-Wei Wang; Sten-Åke Wängberg; Christopher C. White; Antony R. Young; Richard G. Zepp; Liping Zhu;AbstractThis Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Canterbury, Christchurch: UC Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-024-00552-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2024 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Canterbury, Christchurch: UC Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-024-00552-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Report , Other literature type 2025Embargo end date: 01 Jan 2025 Denmark, Germany, Finland, Switzerland, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | SOCLIM, UKRI | VIGILANT : Vital IntelliG..., ARC | Special Research Initiati...EC| SOCLIM ,UKRI| VIGILANT : Vital IntelliGence to Investigate ILlegAl DisiNformaTion ,ARC| Special Research Initiatives - Grant ID: SR200100005Patrick J. Neale; Samuel Hylander; Anastazia T. Banaszak; Donat-P. Häder; Kevin C. Rose; Davide Vione; Sten-Åke Wängberg; Marcel A. K. Jansen; Rosa Busquets; Mads P. Sulbæk Andersen; Sasha Madronich; Mark L. Hanson; Tamara Schikowski; Keith R. Solomon; Barbara Sulzberger; Timothy J. Wallington; Anu M. Heikkilä; Krishna K. Pandey; Anthony L. Andrady; Laura S. Bruckman; Christopher C. White; Liping Zhu; Germar H. Bernhard; Alkiviadis Bais; Pieter J. Aucamp; Gabriel Chiodo; Raúl R. Cordero; Irina Petropavlovskikh; Rachel E. Neale; Catherine M. Olsen; Simon Hales; Aparna Lal; Gareth Lingham; Lesley E. Rhodes; Antony R. Young; T. Matthew Robson; Sharon A. Robinson; Paul W. Barnes; Janet F. Bornman; Anna B. Harper; Hanna Lee; Roy Mackenzie Calderón; Rachele Ossola; Nigel D. Paul; Laura E. Revell; Qing-Wei Wang; Richard G. Zepp;doi: 10.1007/s43630-025-00687-x , 10.71747/uow-r3gk326m.28646453 , 10.71747/uow-r3gk326m.28646453.v1 , 10.3929/ethz-b-000728235
pmid: 40095356
pmc: PMC11971163
handle: 10138/594473 , 2318/2068781
doi: 10.1007/s43630-025-00687-x , 10.71747/uow-r3gk326m.28646453 , 10.71747/uow-r3gk326m.28646453.v1 , 10.3929/ethz-b-000728235
pmid: 40095356
pmc: PMC11971163
handle: 10138/594473 , 2318/2068781
Abstract This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) addresses the interacting effects of changes in stratospheric ozone, solar ultraviolet (UV) radiation, and climate on the environment and human health. These include new modelling studies that confirm the benefits of the Montreal Protocol in protecting the stratospheric ozone layer and its role in maintaining a stable climate, both at low and high latitudes. We also provide an update on projected levels of solar UV-radiation during the twenty-first century. Potential environmental consequences of climate intervention scenarios are also briefly discussed, illustrating the large uncertainties of, for example, Stratospheric Aerosol Injection (SAI). Modelling studies predict that, although SAI would cool the Earth’s surface, other climate factors would be affected, including stratospheric ozone depletion and precipitation patterns. The contribution to global warming of replacements for ozone-depleting substances (ODS) are assessed. With respect to the breakdown products of chemicals under the purview of the Montreal Protocol, the risks to ecosystem and human health from the formation of trifluoroacetic acid (TFA) as a degradation product of ODS replacements are currently de minimis. UV-radiation and climate change continue to have complex interactive effects on the environment due largely to human activities. UV-radiation, other weathering factors, and microbial action contribute significantly to the breakdown of plastic waste in the environment, and in affecting transport, fate, and toxicity of the plastics in terrestrial and aquatic ecosystems, and the atmosphere. Sustainability demands continue to drive industry innovations to mitigate environmental consequences of the use and disposal of plastic and plastic-containing materials. Terrestrial ecosystems in alpine and polar environments are increasingly being exposed to enhanced UV-radiation due to earlier seasonal snow and ice melt because of climate warming and extended periods of ozone depletion. Solar radiation, including UV-radiation, also contributes to the decomposition of dead plant material, which affects nutrient cycling, carbon storage, emission of greenhouse gases, and soil fertility. In aquatic ecosystems, loss of ice cover is increasing the area of polar oceans exposed to UV-radiation with possible negative effects on phytoplankton productivity. However, modelling studies of Arctic Ocean circulation suggests that phytoplankton are circulating to progressively deeper ocean layers with less UV irradiation. Human health is also modified by climate change and behaviour patterns, resulting in changes in exposure to UV-radiation with harmful or beneficial effects depending on conditions and skin type. For example, incidence of melanoma has been associated with increased air temperature, which affects time spent outdoors and thus exposure to UV-radiation. Overall, implementation of the Montreal Protocol and its Amendments has mitigated the deleterious effects of high levels of UV-radiation and global warming for both environmental and human health.
Archivio Istituziona... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemPublications at Bielefeld UniversityArticle . 2025License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-025-00687-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2025Data sources: Copenhagen University Research Information SystemPublications at Bielefeld UniversityArticle . 2025License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-025-00687-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Publicly fundedPaul W. Barnes; Janet F. Bornman; Krishna K. Pandey; Germar H. Bernhard; Alkiviadis F. Bais; Rachel E. Neale; Thomas Matthew Robson; Patrick J. Neale; Craig E. Williamson; Richard G. Zepp; Sasha Madronich; Stephen R. Wilson; Anthony L. Andrady; Anu M. Heikkilä; Sharon A. Robinson;doi: 10.1111/gcb.15841
pmid: 34392574
The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, Finland, Argentina, ArgentinaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:ARC | Discovery Projects - Gran..., AKA | How does the spectrum of ..., SFI | Exploiting narrow-band UV...ARC| Discovery Projects - Grant ID: DP180100113 ,AKA| How does the spectrum of radiation penetrating a deciduous forest canopy influence understorey phenology and interact with climate to affect ecosystem processes ,SFI| Exploiting narrow-band UV-LEDs for Sustainable, Innovative, Technology-Enabled Cropping (UV-SINTEC)Bornman, Janet F; Barnes, Paul W; Robson, T Matthew; Robinson, Sharon A; Jansen, Marcel A.K; Ballare, Carlos L; Flint, Stephan D;Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280-315 nm) is modified by stratospheric ozone dynamics and climate change. Even though stabilisation and projected recovery of stratospheric ozone is expected to curtail future increases in UV-B radiation at the Earth's surface, on-going changes in climate are increasingly exposing plants and animals to novel combinations of UV-B radiation and other climate change factors (e.g., ultraviolet-A and visible radiation, water availability, temperature and elevated carbon dioxide). Climate change is also shifting vegetation cover, geographic ranges of species, and seasonal timing of development, which further modifies exposure to UV-B radiation. Since our last assessment, there has been increased understanding of the underlying mechanisms by which plants perceive UV-B radiation, eliciting changes in growth, development and tolerances of abiotic and biotic factors. However, major questions remain on how UV-B radiation is interacting with other climate change factors to modify the production and quality of crops, as well as important ecosystem processes such as plant and animal competition, pest-pathogen interactions, and the decomposition of dead plant matter (litter). In addition, stratospheric ozone depletion is directly contributing to climate change in the southern hemisphere, such that terrestrial ecosystems in this region are being exposed to altered patterns of precipitation, temperature and fire regimes as well as UV-B radiation. These ozone-driven changes in climate have been implicated in both increases and reductions in the growth, survival and reproduction of plants and animals in Antarctica, South America and New Zealand. In this assessment, we summarise advances in our knowledge of these and other linkages and effects, and identify uncertainties and knowledge gaps that limit our ability to fully evaluate the ecological consequences of these environmental changes on terrestrial ecosystems.
Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallPhotochemical & Photobiological SciencesArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Wollongong, Australia: Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8pp90061b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallPhotochemical & Photobiological SciencesArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefHELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversity of Wollongong, Australia: Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8pp90061b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Denmark, AustraliaPublisher:Wiley Publicly fundedMarcel A. K. Jansen; Anthony L. Andrady; Paul W. Barnes; Rosa Busquets; Laura E. Revell; Janet F. Bornman; Pieter J. Aucamp; Alkiviadis F. Bais; Anastazia T. Banaszak; Germar H. Bernhard; Laura S. Bruckman; Donat‐P. Häder; Mark L. Hanson; Anu M. Heikkilä; Samuel Hylander; Robyn M. Lucas; Roy Mackenzie; Sasha Madronich; Patrick J. Neale; Rachel E. Neale; Catherine M. Olsen; Rachele Ossola; Krishna K. Pandey; Irina Petropavlovskikh; Sharon A. Robinson; T. Matthew Robson; Kevin C. Rose; Keith R. Solomon; Mads P. Sulbæk Andersen; Barbara Sulzberger; Timothy J. Wallington; Qing‐Wei Wang; Sten‐Åke Wängberg; Christopher C. White; Antony R. Young; Richard G. Zepp; Liping Zhu;doi: 10.1111/gcb.17279
pmid: 38619007
There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, Australia, Argentina, United Kingdom, Australia, Australia, ArgentinaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:FCT | LA 1FCT| LA 1Barbara Sulzberger; Craig E. Williamson; Richard G. Zepp; Mary Norval; Sasha Madronich; Alkiviadis F. Bais; Amy T. Austin; Nigel D. Paul; Richard McKenzie; Carlos L. Ballaré; Sharon A. Robinson; Donat-P. Häder; Janet F. Bornman; Robyn M. Lucas; Robyn M. Lucas;doi: 10.1038/nclimate2225
handle: 11336/4337 , 1885/25642 , 20.500.11937/9218
The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex interactions between the drivers of climate change and those of stratospheric ozone depletion, and the positive and negative feedbacks among climate, ozone and ultraviolet radiation. These will result in both risks and benefits of exposure to ultraviolet radiation for the environment and human welfare. This Review synthesizes these new insights and their relevance in a world where changes in climate as well as in stratospheric ozone are altering exposure to ultraviolet radiation with largely unknown consequences for the biosphere.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25642Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 299 citations 299 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25642Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2225&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Authors: Janet F. Bornman; Paul W. Barnes; Krishna Pandey;pmid: 36753023
Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPhotochemical & Photobiological SciencesOther literature type . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-023-00374-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Photochemical & Phot... arrow_drop_down Photochemical & Photobiological SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPhotochemical & Photobiological SciencesOther literature type . 2023Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-023-00374-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu