- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 AustraliaPublisher:MDPI AG Cao, L; Kronander, A; Tang, A; Wang, DW; Skyllas-Kazacos, M;doi: 10.3390/en9121058
handle: 1959.4/unsworks_53768
The inevitable diffusion of vanadium ions across the membrane can cause considerable capacity loss and temperature increase in vanadium redox flow batteries (VRFBs) over long term operation. Reliable experimental data of the permeability rates of vanadium ions are needed for membrane selection and for use in mathematical models to predict long-term behavior. In this paper a number of ion exchange membranes were selected for detailed evaluation using a modified approach to obtain more accurate permeation rates of V2+, V3+, VO2+ and VO2+ ions. Three commercial ion exchange membranes—FAP450, VB2 and F930—are investigated. The obtained diffusion coefficients are then employed in dynamic models to predict the thermal behavior under specific operating conditions. The simulation results prove that smaller and more balanced permeability rates of V2+ and VO2+ ions are more important to avoid large temperature increases in the cell stack during stand-by periods at high states-of-charge with pumps off.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1058/pdfData sources: Multidisciplinary Digital Publishing InstituteUNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53768Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1058/pdfData sources: Multidisciplinary Digital Publishing InstituteUNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53768Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Wiley M. Kazacos; Maria Skyllas-Kazacos; Nadeem Kausar; Liuyue Cao; Asem Mousa;pmid: 27295523
AbstractReview: 144 refs.
ChemInform arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chin.201637171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu413 citations 413 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert ChemInform arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chin.201637171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 AustraliaPublisher:MDPI AG Cao, L; Kronander, A; Tang, A; Wang, DW; Skyllas-Kazacos, M;doi: 10.3390/en9121058
handle: 1959.4/unsworks_53768
The inevitable diffusion of vanadium ions across the membrane can cause considerable capacity loss and temperature increase in vanadium redox flow batteries (VRFBs) over long term operation. Reliable experimental data of the permeability rates of vanadium ions are needed for membrane selection and for use in mathematical models to predict long-term behavior. In this paper a number of ion exchange membranes were selected for detailed evaluation using a modified approach to obtain more accurate permeation rates of V2+, V3+, VO2+ and VO2+ ions. Three commercial ion exchange membranes—FAP450, VB2 and F930—are investigated. The obtained diffusion coefficients are then employed in dynamic models to predict the thermal behavior under specific operating conditions. The simulation results prove that smaller and more balanced permeability rates of V2+ and VO2+ ions are more important to avoid large temperature increases in the cell stack during stand-by periods at high states-of-charge with pumps off.
Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1058/pdfData sources: Multidisciplinary Digital Publishing InstituteUNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53768Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2016License: CC BYFull-Text: http://www.mdpi.com/1996-1073/9/12/1058/pdfData sources: Multidisciplinary Digital Publishing InstituteUNSWorksArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53768Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9121058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Wiley M. Kazacos; Maria Skyllas-Kazacos; Nadeem Kausar; Liuyue Cao; Asem Mousa;pmid: 27295523
AbstractReview: 144 refs.
ChemInform arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chin.201637171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu413 citations 413 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert ChemInform arrow_drop_down ChemInformArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefChemSusChemArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/chin.201637171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu