- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Kijung Kim;Changhyo Yi;
Changhyo Yi
Changhyo Yi in OpenAIRESeungil Lee;
Seungil Lee
Seungil Lee in OpenAIREAbstract A change in the thermal environment of an urban area affects health, living conditions, and energy consumption. In urban planning, urban parks are one of the methods for improving the thermal environment and saving cooling energy. Urban park construction can mitigate temperature, but it also causes urban development by increasing local attractiveness. To achieve efficient energy saving through parks in urban planning, the purpose of this study is to investigate the relationship between building energy consumption and urban characteristics both before and after the construction of an urban park. This study targeted Seoul's Gyeongui line forest, which was recently converted into a linear park on the former railway as an urban regeneration project. We analyzed the relationship between energy consumption and urban characteristics using a regression model, focusing on the changes before and after the construction. In this study, urban characteristics include environment, building physical characteristics, and economic variables. The results show that the construction of the urban park reduced not only temperature but also building energy consumption. The energy reduction effect of the park was limited to a marginal distance. Meanwhile, the urban park construction caused land prices to rise and prompted new development, and this changed the urban characteristics of the area and affected energy consumption. Despite changes in urban characteristics, urban park planning is an effective methods of reducing the energy consumption involved in cooling urban areas. We recommend comprehensive consideration of the urban factors when making park policy to reduce urban temperature and energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Kijung Kim;Changhyo Yi;
Changhyo Yi
Changhyo Yi in OpenAIRESeungil Lee;
Seungil Lee
Seungil Lee in OpenAIREAbstract A change in the thermal environment of an urban area affects health, living conditions, and energy consumption. In urban planning, urban parks are one of the methods for improving the thermal environment and saving cooling energy. Urban park construction can mitigate temperature, but it also causes urban development by increasing local attractiveness. To achieve efficient energy saving through parks in urban planning, the purpose of this study is to investigate the relationship between building energy consumption and urban characteristics both before and after the construction of an urban park. This study targeted Seoul's Gyeongui line forest, which was recently converted into a linear park on the former railway as an urban regeneration project. We analyzed the relationship between energy consumption and urban characteristics using a regression model, focusing on the changes before and after the construction. In this study, urban characteristics include environment, building physical characteristics, and economic variables. The results show that the construction of the urban park reduced not only temperature but also building energy consumption. The energy reduction effect of the park was limited to a marginal distance. Meanwhile, the urban park construction caused land prices to rise and prompted new development, and this changed the urban characteristics of the area and affected energy consumption. Despite changes in urban characteristics, urban park planning is an effective methods of reducing the energy consumption involved in cooling urban areas. We recommend comprehensive consideration of the urban factors when making park policy to reduce urban temperature and energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors:Changhyo Yi;
Changhyo Yi
Changhyo Yi in OpenAIREKijung Kim;
Kijung Kim
Kijung Kim in OpenAIREdoi: 10.3390/su10092996
This study aimed to evaluate the applicability of a machine learning approach to the description of residential mobility patterns of households in the Seoul metropolitan region (SMR). The spatial range and temporal scope of the empirical study were set to 2015 to review the most recent residential mobility patterns in the SMR. The analysis data used in this study included the Internal Migration Statistics microdata provided by the Microdata Integrated Service of Statistics Korea. We analysed the residential relocation distance of households in the SMR using machine learning techniques, such as ordinary least squares regression and decision tree regression. The results of this study showed that a decision tree model can be more advantageous than ordinary least squares regression in terms of explanatory power and estimation of moving distance. A large number of residential movements are mainly related to the accessibility to employment markets and some household characteristics. The shortest movements occur when households with two or more members move into densely populated districts. In contrast, job-based residential movements are relatively farther. Furthermore, we derived knowledge on residential relocation distance, which can provide significant information for the urban management of metropolitan residential districts and the construction of reasonable housing policies.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/9/2996/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10092996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/9/2996/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10092996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors:Changhyo Yi;
Changhyo Yi
Changhyo Yi in OpenAIREKijung Kim;
Kijung Kim
Kijung Kim in OpenAIREdoi: 10.3390/su10092996
This study aimed to evaluate the applicability of a machine learning approach to the description of residential mobility patterns of households in the Seoul metropolitan region (SMR). The spatial range and temporal scope of the empirical study were set to 2015 to review the most recent residential mobility patterns in the SMR. The analysis data used in this study included the Internal Migration Statistics microdata provided by the Microdata Integrated Service of Statistics Korea. We analysed the residential relocation distance of households in the SMR using machine learning techniques, such as ordinary least squares regression and decision tree regression. The results of this study showed that a decision tree model can be more advantageous than ordinary least squares regression in terms of explanatory power and estimation of moving distance. A large number of residential movements are mainly related to the accessibility to employment markets and some household characteristics. The shortest movements occur when households with two or more members move into densely populated districts. In contrast, job-based residential movements are relatively farther. Furthermore, we derived knowledge on residential relocation distance, which can provide significant information for the urban management of metropolitan residential districts and the construction of reasonable housing policies.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/9/2996/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10092996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/9/2996/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10092996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu