- home
- Advanced Search
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset , Other dataset type 2016 NetherlandsPublisher:PANGAEA Urrego, Dunia H; Hooghiemstra, Henry; Rama-Corredor, O; Martrat, Belén; Grimalt, Joan O; Thompson, L;We compare eight pollen records reflecting climatic and environmental change from the tropical Andes. Our analysis focuses on the last 50 ka, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations, and precipitation change. Our analysis focuses on the signature of millennial-scale variability in the tropical Andes, in particular, Heinrich stadials and Greenland interstadials. We identify rapid responses of the tropical vegetation to this climate variability, and relate differences between sites to moisture sources and site sensitivity. Supplement to: Urrego, Dunia H; Hooghiemstra, Henry; Rama-Corredor, O; Martrat, Belén; Grimalt, Joan O; Thompson, L (2015): Rapid millennial-scale vegetation changes in the tropical Andes. Climate of the Past Discussions, 11(3), 1701-1739 DOI as provided by CPD is not correct!
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryPANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.858525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryPANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.858525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2016 NetherlandsPublisher:PANGAEA Urrego, Dunia H; Hooghiemstra, Henry; Rama-Corredor, O; Martrat, Belén; Grimalt, Joan O; Thompson, L;We compare eight pollen records reflecting climatic and environmental change from the tropical Andes. Our analysis focuses on the last 50 ka, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations, and precipitation change. Our analysis focuses on the signature of millennial-scale variability in the tropical Andes, in particular, Heinrich stadials and Greenland interstadials. We identify rapid responses of the tropical vegetation to this climate variability, and relate differences between sites to moisture sources and site sensitivity. Supplement to: Urrego, Dunia H; Hooghiemstra, Henry; Rama-Corredor, O; Martrat, Belén; Grimalt, Joan O; Thompson, L (2015): Rapid millennial-scale vegetation changes in the tropical Andes. Climate of the Past Discussions, 11(3), 1701-1739 DOI as provided by CPD is not correct!
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryPANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.858525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryPANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.858525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Spain, Netherlands, FrancePublisher:Copernicus GmbH Dunia H. Urrego; H. Hooghiemstra; O. Rama-Corredor; Belén Martrat; Joan O. Grimalt; Lonnie G. Thompson; Mark B. Bush; Zaire González-Carranza; Jennifer A. Hanselman; Bryan G. Valencia; César Velásquez-Ruiz;Abstract. We compare eight pollen records reflecting climatic and environmental change from northern and southern sites in the tropical Andes. Our analysis focuses on the last 30 000 years, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations and moisture availability. Our analysis focuses on the signature of millennial-scale climate variability in the tropical Andes, in particular Heinrich stadials (HS) and Greenland interstadials (GI). The pollen records show an overall warming trend during the Pleistocene–Holocene transition, but the onset of post-glacial warming differs in timing among records. We identify rapid responses of the tropical vegetation to millennial-scale climate variability. The signatures of HS and the Younger Dryas are generally recorded as downslope upper forest line (UFL) migrations in our transect, and are likely linked to air temperature cooling. The GI1 signal is overall comparable between northern and southern records and indicates upslope UFL migrations and warming in the tropical Andes. Our marker for lake level changes indicated a north-to-south difference that could be related to moisture availability. The air temperature signature recorded by the Andean vegetation was consistent with millennial-scale cryosphere and sea surface temperature changes but suggests a potential difference between the magnitude of temperature change in the ocean and the atmosphere. We also show that arboreal pollen percentage (AP %) and detrended correspondence analysis (DCA) scores are two complementary approaches to extract environmental variability from pollen records.
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAClimate of the PastArticle . 2016License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-697-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 35 Powered bymore_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAClimate of the PastArticle . 2016License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-697-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Spain, Netherlands, FrancePublisher:Copernicus GmbH Dunia H. Urrego; H. Hooghiemstra; O. Rama-Corredor; Belén Martrat; Joan O. Grimalt; Lonnie G. Thompson; Mark B. Bush; Zaire González-Carranza; Jennifer A. Hanselman; Bryan G. Valencia; César Velásquez-Ruiz;Abstract. We compare eight pollen records reflecting climatic and environmental change from northern and southern sites in the tropical Andes. Our analysis focuses on the last 30 000 years, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations and moisture availability. Our analysis focuses on the signature of millennial-scale climate variability in the tropical Andes, in particular Heinrich stadials (HS) and Greenland interstadials (GI). The pollen records show an overall warming trend during the Pleistocene–Holocene transition, but the onset of post-glacial warming differs in timing among records. We identify rapid responses of the tropical vegetation to millennial-scale climate variability. The signatures of HS and the Younger Dryas are generally recorded as downslope upper forest line (UFL) migrations in our transect, and are likely linked to air temperature cooling. The GI1 signal is overall comparable between northern and southern records and indicates upslope UFL migrations and warming in the tropical Andes. Our marker for lake level changes indicated a north-to-south difference that could be related to moisture availability. The air temperature signature recorded by the Andean vegetation was consistent with millennial-scale cryosphere and sea surface temperature changes but suggests a potential difference between the magnitude of temperature change in the ocean and the atmosphere. We also show that arboreal pollen percentage (AP %) and detrended correspondence analysis (DCA) scores are two complementary approaches to extract environmental variability from pollen records.
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAClimate of the PastArticle . 2016License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-697-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 35 Powered bymore_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAClimate of the PastArticle . 2016License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-697-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset , Other dataset type 2016 NetherlandsPublisher:PANGAEA Urrego, Dunia H; Hooghiemstra, Henry; Rama-Corredor, O; Martrat, Belén; Grimalt, Joan O; Thompson, L;We compare eight pollen records reflecting climatic and environmental change from the tropical Andes. Our analysis focuses on the last 50 ka, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations, and precipitation change. Our analysis focuses on the signature of millennial-scale variability in the tropical Andes, in particular, Heinrich stadials and Greenland interstadials. We identify rapid responses of the tropical vegetation to this climate variability, and relate differences between sites to moisture sources and site sensitivity. Supplement to: Urrego, Dunia H; Hooghiemstra, Henry; Rama-Corredor, O; Martrat, Belén; Grimalt, Joan O; Thompson, L (2015): Rapid millennial-scale vegetation changes in the tropical Andes. Climate of the Past Discussions, 11(3), 1701-1739 DOI as provided by CPD is not correct!
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryPANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.858525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryPANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.858525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2016 NetherlandsPublisher:PANGAEA Urrego, Dunia H; Hooghiemstra, Henry; Rama-Corredor, O; Martrat, Belén; Grimalt, Joan O; Thompson, L;We compare eight pollen records reflecting climatic and environmental change from the tropical Andes. Our analysis focuses on the last 50 ka, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations, and precipitation change. Our analysis focuses on the signature of millennial-scale variability in the tropical Andes, in particular, Heinrich stadials and Greenland interstadials. We identify rapid responses of the tropical vegetation to this climate variability, and relate differences between sites to moisture sources and site sensitivity. Supplement to: Urrego, Dunia H; Hooghiemstra, Henry; Rama-Corredor, O; Martrat, Belén; Grimalt, Joan O; Thompson, L (2015): Rapid millennial-scale vegetation changes in the tropical Andes. Climate of the Past Discussions, 11(3), 1701-1739 DOI as provided by CPD is not correct!
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryPANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.858525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryPANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.858525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Spain, Netherlands, FrancePublisher:Copernicus GmbH Dunia H. Urrego; H. Hooghiemstra; O. Rama-Corredor; Belén Martrat; Joan O. Grimalt; Lonnie G. Thompson; Mark B. Bush; Zaire González-Carranza; Jennifer A. Hanselman; Bryan G. Valencia; César Velásquez-Ruiz;Abstract. We compare eight pollen records reflecting climatic and environmental change from northern and southern sites in the tropical Andes. Our analysis focuses on the last 30 000 years, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations and moisture availability. Our analysis focuses on the signature of millennial-scale climate variability in the tropical Andes, in particular Heinrich stadials (HS) and Greenland interstadials (GI). The pollen records show an overall warming trend during the Pleistocene–Holocene transition, but the onset of post-glacial warming differs in timing among records. We identify rapid responses of the tropical vegetation to millennial-scale climate variability. The signatures of HS and the Younger Dryas are generally recorded as downslope upper forest line (UFL) migrations in our transect, and are likely linked to air temperature cooling. The GI1 signal is overall comparable between northern and southern records and indicates upslope UFL migrations and warming in the tropical Andes. Our marker for lake level changes indicated a north-to-south difference that could be related to moisture availability. The air temperature signature recorded by the Andean vegetation was consistent with millennial-scale cryosphere and sea surface temperature changes but suggests a potential difference between the magnitude of temperature change in the ocean and the atmosphere. We also show that arboreal pollen percentage (AP %) and detrended correspondence analysis (DCA) scores are two complementary approaches to extract environmental variability from pollen records.
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAClimate of the PastArticle . 2016License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-697-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 35 Powered bymore_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAClimate of the PastArticle . 2016License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-697-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Spain, Netherlands, FrancePublisher:Copernicus GmbH Dunia H. Urrego; H. Hooghiemstra; O. Rama-Corredor; Belén Martrat; Joan O. Grimalt; Lonnie G. Thompson; Mark B. Bush; Zaire González-Carranza; Jennifer A. Hanselman; Bryan G. Valencia; César Velásquez-Ruiz;Abstract. We compare eight pollen records reflecting climatic and environmental change from northern and southern sites in the tropical Andes. Our analysis focuses on the last 30 000 years, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for extracting environmental variability from pollen records. We also use the records of aquatic and shoreline vegetation as markers for lake level fluctuations and moisture availability. Our analysis focuses on the signature of millennial-scale climate variability in the tropical Andes, in particular Heinrich stadials (HS) and Greenland interstadials (GI). The pollen records show an overall warming trend during the Pleistocene–Holocene transition, but the onset of post-glacial warming differs in timing among records. We identify rapid responses of the tropical vegetation to millennial-scale climate variability. The signatures of HS and the Younger Dryas are generally recorded as downslope upper forest line (UFL) migrations in our transect, and are likely linked to air temperature cooling. The GI1 signal is overall comparable between northern and southern records and indicates upslope UFL migrations and warming in the tropical Andes. Our marker for lake level changes indicated a north-to-south difference that could be related to moisture availability. The air temperature signature recorded by the Andean vegetation was consistent with millennial-scale cryosphere and sea surface temperature changes but suggests a potential difference between the magnitude of temperature change in the ocean and the atmosphere. We also show that arboreal pollen percentage (AP %) and detrended correspondence analysis (DCA) scores are two complementary approaches to extract environmental variability from pollen records.
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAClimate of the PastArticle . 2016License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-697-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 35 Powered bymore_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAClimate of the PastArticle . 2016License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/cp-12-697-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu