- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Japan, NetherlandsPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVTakao Onoye; Ittetsu Taniguchi; Francky Catthoor; Francky Catthoor; Hans Goverde; Hans Goverde; Daichi Watari; Patrizio Manganiello; Patrizio Manganiello; Elham Shirazi; Elham Shirazi;Abstract We propose a multi-time scale energy management framework for a smart photovoltaic (PV) system that can calculate optimized schedules for battery operation, power purchases, and appliance usage. A smart PV system is a local energy community that includes several buildings and households equipped with PV panels and batteries. However, due to the unpredictability and fast variation of PV generation, maintaining energy balance and reducing electricity costs in the system is challenging. Our proposed framework employs a model predictive control approach with a physics-based PV forecasting model and an accurately parameterized battery model. We also introduce a multi-time scale structure composed of two-time scales: a longer coarse-grained time scale for daily horizon with 15-minutes resolution and a shorter fine-grained time scale for 15-minutes horizon with 1-second resolution. In contrast to the current single-time scale approaches, this alternative structure enables the management of a necessary mix of fast and slow system dynamics with reasonable computational times while maintaining high accuracy. Simulation results show that the proposed framework reduces electricity costs up 48.1% compared with baseline methods. The necessity of a multi-time scale and the impact on accurate system modeling in terms of PV forecasting and batteries are also demonstrated.
Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Japan, NetherlandsPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVTakao Onoye; Ittetsu Taniguchi; Francky Catthoor; Francky Catthoor; Hans Goverde; Hans Goverde; Daichi Watari; Patrizio Manganiello; Patrizio Manganiello; Elham Shirazi; Elham Shirazi;Abstract We propose a multi-time scale energy management framework for a smart photovoltaic (PV) system that can calculate optimized schedules for battery operation, power purchases, and appliance usage. A smart PV system is a local energy community that includes several buildings and households equipped with PV panels and batteries. However, due to the unpredictability and fast variation of PV generation, maintaining energy balance and reducing electricity costs in the system is challenging. Our proposed framework employs a model predictive control approach with a physics-based PV forecasting model and an accurately parameterized battery model. We also introduce a multi-time scale structure composed of two-time scales: a longer coarse-grained time scale for daily horizon with 15-minutes resolution and a shorter fine-grained time scale for 15-minutes horizon with 1-second resolution. In contrast to the current single-time scale approaches, this alternative structure enables the management of a necessary mix of fast and slow system dynamics with reasonable computational times while maintaining high accuracy. Simulation results show that the proposed framework reduces electricity costs up 48.1% compared with baseline methods. The necessity of a multi-time scale and the impact on accurate system modeling in terms of PV forecasting and batteries are also demonstrated.
Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NetherlandsPublisher:Springer Science and Business Media LLC Andres Calcabrini; Mirco Muttillo; Miro Zeman; Patrizio Manganiello; Olindo Isabella;AbstractReconfigurable photovoltaic modules are a promising approach to improve the energy yield of partially shaded systems. So far, the feasibility of this concept has been evaluated through simulations or simplified experiments. In this work, we analyse the outdoor performance of a full-scale prototype of a series-parallel photovoltaic module with six reconfigurable blocks. Over a 4-month-long period, its performance was compared to a reference photovoltaic module with static interconnections and six bypass diodes. The results show that under partial shading, the reconfigurable module produced 10.2% more energy than the reference module. In contrast, under uniform illumination the energy yield of the reconfigurable PV module was 1.9% lower due to the additional losses introduced by its switching matrix. Finally, a modification in the reconfiguration algorithm is proposed to reduce the output current–voltage range of the module and simplify the design of module-level power converters while limiting the shading tolerance loss.
Nature Communication... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-43927-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 3 Powered bymore_vert Nature Communication... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-43927-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NetherlandsPublisher:Springer Science and Business Media LLC Andres Calcabrini; Mirco Muttillo; Miro Zeman; Patrizio Manganiello; Olindo Isabella;AbstractReconfigurable photovoltaic modules are a promising approach to improve the energy yield of partially shaded systems. So far, the feasibility of this concept has been evaluated through simulations or simplified experiments. In this work, we analyse the outdoor performance of a full-scale prototype of a series-parallel photovoltaic module with six reconfigurable blocks. Over a 4-month-long period, its performance was compared to a reference photovoltaic module with static interconnections and six bypass diodes. The results show that under partial shading, the reconfigurable module produced 10.2% more energy than the reference module. In contrast, under uniform illumination the energy yield of the reconfigurable PV module was 1.9% lower due to the additional losses introduced by its switching matrix. Finally, a modification in the reconfiguration algorithm is proposed to reduce the output current–voltage range of the module and simplify the design of module-level power converters while limiting the shading tolerance loss.
Nature Communication... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-43927-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 3 Powered bymore_vert Nature Communication... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-43927-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:4TU.ResearchData van Nijen, David A.; Saurabh Chakravarty; Voorn, Jim; Zeman, Miro; Isabella, Olindo; Manganiello, Patrizio;This package contains data and code associated with the publication "Feasibility study on photovoltaic module-integrated planar air-core inductors to facilitate embedded power electronics".The package contains:The employed COMSOL models (.mph) for simulating frequency-dependent inductance and resistance of planar inductors. The inductors are placed within a spherical air domain, with an infinite element domain at the outer boundary.The simulated inductor parameters and feasibility data reported in this study (.xlsx).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/b7267f87-15b1-4c97-b9b2-e3aeb95393ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/b7267f87-15b1-4c97-b9b2-e3aeb95393ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:4TU.ResearchData van Nijen, David A.; Saurabh Chakravarty; Voorn, Jim; Zeman, Miro; Isabella, Olindo; Manganiello, Patrizio;This package contains data and code associated with the publication "Feasibility study on photovoltaic module-integrated planar air-core inductors to facilitate embedded power electronics".The package contains:The employed COMSOL models (.mph) for simulating frequency-dependent inductance and resistance of planar inductors. The inductors are placed within a spherical air domain, with an infinite element domain at the outer boundary.The simulated inductor parameters and feasibility data reported in this study (.xlsx).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/b7267f87-15b1-4c97-b9b2-e3aeb95393ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/b7267f87-15b1-4c97-b9b2-e3aeb95393ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: SPAGNUOLO, Giovanni; PETRONE, GIOVANNI; Pietro Luigi Carotenuto; Patrizio Manganiello;handle: 11386/4254493
In many applications, the current versus voltage curve of a photovoltaic cell, module, string, or field is acquired. A high number of samples are usually acquired, but the curve contains the main information in the open- and short-circuit points, as well as where it has a strong change in the slope. In this paper, these parts are called “the fingerprint” of the photovoltaic generator. The fingerprint allows us to recognize the working conditions of the photovoltaic generator, e.g., if it is affected by a partial shadowing or not. Saving the fingerprint and discarding the other points of the original curve allows us to minimize the memory needs for storing the curve without losing the main information content. In this paper, a numerical technique for selecting, from among the samples of the acquired current versus voltage curve of any photovoltaic generator, the ones to be included in the fingerprint is proposed. The processing steps and the memory needed to achieve the result are minimized in order to allow an implementation of the algorithm also in a low-cost processor for on-field real-time applications. The technique is validated through curves generated by using analytical models as well as by means of some curves acquired experimentally in outdoor conditions.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di SalernoArticle . 2014Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2294759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di SalernoArticle . 2014Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2294759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: SPAGNUOLO, Giovanni; PETRONE, GIOVANNI; Pietro Luigi Carotenuto; Patrizio Manganiello;handle: 11386/4254493
In many applications, the current versus voltage curve of a photovoltaic cell, module, string, or field is acquired. A high number of samples are usually acquired, but the curve contains the main information in the open- and short-circuit points, as well as where it has a strong change in the slope. In this paper, these parts are called “the fingerprint” of the photovoltaic generator. The fingerprint allows us to recognize the working conditions of the photovoltaic generator, e.g., if it is affected by a partial shadowing or not. Saving the fingerprint and discarding the other points of the original curve allows us to minimize the memory needs for storing the curve without losing the main information content. In this paper, a numerical technique for selecting, from among the samples of the acquired current versus voltage curve of any photovoltaic generator, the ones to be included in the fingerprint is proposed. The processing steps and the memory needed to achieve the result are minimized in order to allow an implementation of the algorithm also in a low-cost processor for on-field real-time applications. The technique is validated through curves generated by using analytical models as well as by means of some curves acquired experimentally in outdoor conditions.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di SalernoArticle . 2014Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2294759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di SalernoArticle . 2014Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2294759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, BelgiumPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVGiel Van den Broeck; Marc Meuris; Marc Meuris; Jens Moschner; Mauricio Dalla Vecchia; Patrizio Manganiello; Georgi Hristov Yordanov; Simon Ravyts; Johan Driesen;handle: 1942/31810
Facade building-integrated photovoltaics is a technology that transforms a passive facade into a distributed, renewable electrical generator by the inclusion of solar cells in the building envelope. Partial shading due to nearby objects is a typical problem for facade building-integrated photovoltaics as it strongly reduces the output power of the installation. Distributed maximum power point tracking by means of embedded converters and a common direct current bus has been proposed to alleviate this issue. However, the bus voltage plays an important role in converter topology selection and overall efficiency, although this is not being covered in literature. Also the influence of the solar cell technology on the output voltage of the module is not studied before, although it strongly influences the converter topology selection and the losses. In this paper, a methodology is described to investigate the influence of the voltage level and solar cell technology by taking conversion losses in the converters and the cabling into account. The methodology is applied to two case study buildings for which four different cell technologies are considered. It is shown that overall high efficiencies are obtained, regardless of the voltage level. However, the loss distribution changes significantly with the voltage. This aspect can be used advantageously to reduce thermal stresses on the embedded converter. Furthermore, the overall system efficiency is typically higher when the voltage step-up is lower.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, BelgiumPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVGiel Van den Broeck; Marc Meuris; Marc Meuris; Jens Moschner; Mauricio Dalla Vecchia; Patrizio Manganiello; Georgi Hristov Yordanov; Simon Ravyts; Johan Driesen;handle: 1942/31810
Facade building-integrated photovoltaics is a technology that transforms a passive facade into a distributed, renewable electrical generator by the inclusion of solar cells in the building envelope. Partial shading due to nearby objects is a typical problem for facade building-integrated photovoltaics as it strongly reduces the output power of the installation. Distributed maximum power point tracking by means of embedded converters and a common direct current bus has been proposed to alleviate this issue. However, the bus voltage plays an important role in converter topology selection and overall efficiency, although this is not being covered in literature. Also the influence of the solar cell technology on the output voltage of the module is not studied before, although it strongly influences the converter topology selection and the losses. In this paper, a methodology is described to investigate the influence of the voltage level and solar cell technology by taking conversion losses in the converters and the cabling into account. The methodology is applied to two case study buildings for which four different cell technologies are considered. It is shown that overall high efficiencies are obtained, regardless of the voltage level. However, the loss distribution changes significantly with the voltage. This aspect can be used advantageously to reduce thermal stresses on the embedded converter. Furthermore, the overall system efficiency is typically higher when the voltage step-up is lower.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Authors: Hesan Ziar; Patrizio Manganiello; Olindo Isabella; Miro Zeman;doi: 10.1039/d0ee02491k
Electrification and digitization are two significant trends in the energy sector. Photovoltatronics unites these trends by combining solar electricity generation and information communication in PV-based intelligent energy agents.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02491k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 37 citations 37 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02491k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Authors: Hesan Ziar; Patrizio Manganiello; Olindo Isabella; Miro Zeman;doi: 10.1039/d0ee02491k
Electrification and digitization are two significant trends in the energy sector. Photovoltatronics unites these trends by combining solar electricity generation and information communication in PV-based intelligent energy agents.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02491k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 37 citations 37 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02491k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2019Publisher:WIP Borgers, Tom; Govaerts, Jonathan; Van Dyck, Rik; El-Chami, Ibrahim; Nivelle, Philippe; van der Heide, Arvid; Voroshazi, Eszter; Manganiello, Patrizio; Szlufcik, Jozef; Poortmans, Jef; Bervoets, Robin; Vastmans, Luc; Moors, Reinoud; Doumen, Geert;In this paper an overview of interconnection technologies for bifacial and back-contacted (bifacial) cells in different stages of their development is reported, leading to a new technology suited for efficient interconnection of (bifacial) back-contact cells. 36th European Photovoltaic Solar Energy Conference and Exhibition; 1-5
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20192019-1ap.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 175visibility views 175 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20192019-1ap.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2019Publisher:WIP Borgers, Tom; Govaerts, Jonathan; Van Dyck, Rik; El-Chami, Ibrahim; Nivelle, Philippe; van der Heide, Arvid; Voroshazi, Eszter; Manganiello, Patrizio; Szlufcik, Jozef; Poortmans, Jef; Bervoets, Robin; Vastmans, Luc; Moors, Reinoud; Doumen, Geert;In this paper an overview of interconnection technologies for bifacial and back-contacted (bifacial) cells in different stages of their development is reported, leading to a new technology suited for efficient interconnection of (bifacial) back-contact cells. 36th European Photovoltaic Solar Energy Conference and Exhibition; 1-5
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20192019-1ap.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 175visibility views 175 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20192019-1ap.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Elsevier BV Funded by:FCT | D4FCT| D4Andres Calcabrini; Raoul Weegink; Patrizio Manganiello; Miro Zeman; Olindo Isabella;Urban environments present a great potential to generate electricity with photovoltaic technology. However, this electricity cannot be fully harvested using conventional solar modules that have been designed for open landscapes. In urban environments, photovoltaic modules can often be subject to partial shading caused by trees and building structures. Therefore, new photovoltaic module concepts and designs must be explored to increase the shading tolerance of PV modules. This study proposes a simple yet effective approach to compare the potential of different module topologies for maximising the electrical yield of partially shaded photovoltaic systems. Using this approach, the annual electrical performance of various PV module topologies in different urban environments and climates is simulated and compared to determine the potential benefit of using photovoltaic modules with new topologies. Results suggest that the shading tolerance of conventional solar modules can be significantly improved by adding only a few bypass diodes or parallel interconnections. It is shown that the yield of a partially shaded PV system endowed with conventional solar modules could be increased as much as 25% when shading is caused by nearby obstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Elsevier BV Funded by:FCT | D4FCT| D4Andres Calcabrini; Raoul Weegink; Patrizio Manganiello; Miro Zeman; Olindo Isabella;Urban environments present a great potential to generate electricity with photovoltaic technology. However, this electricity cannot be fully harvested using conventional solar modules that have been designed for open landscapes. In urban environments, photovoltaic modules can often be subject to partial shading caused by trees and building structures. Therefore, new photovoltaic module concepts and designs must be explored to increase the shading tolerance of PV modules. This study proposes a simple yet effective approach to compare the potential of different module topologies for maximising the electrical yield of partially shaded photovoltaic systems. Using this approach, the annual electrical performance of various PV module topologies in different urban environments and climates is simulated and compared to determine the potential benefit of using photovoltaic modules with new topologies. Results suggest that the shading tolerance of conventional solar modules can be significantly improved by adding only a few bypass diodes or parallel interconnections. It is shown that the yield of a partially shaded PV system endowed with conventional solar modules could be increased as much as 25% when shading is caused by nearby obstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 31 Aug 2020 Belgium, FinlandPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVAuthors: Manganiello, Patrizio; Govaerts, Jonathan; Horvath, Imre T.; Chowdhury, Mohammed Gofran; +7 AuthorsManganiello, Patrizio; Govaerts, Jonathan; Horvath, Imre T.; Chowdhury, Mohammed Gofran; Yordanov, Georgi H.; Goverde, Hans; Aldalali, Bader; Beausoleil-Morrison, Ian; Valkealahti, Seppo; Lappalainen, Kari; Poortmans, Jef;handle: 1942/32870
Currently, photovoltaic (PV) installations target a maximization of annual energy yield. In the future however, electricity generation may need to match better with the load profiles in a given environment and climate. In particular this will be a challenge for generation across the seasons, where electrical storage is less suitable, and in the built environment, where wind turbines for generation are much more difficult to integrate. In this paper we discuss how this challenge may be addressed with climate- and consumption-specific PV module technology. In particular, we demonstrate how the temperature coefficient of a PV system can impact the energy yield throughout the year. After explaining the concept, we apply our electrical-optical-thermal model to do very accurate physics-based bottom-up simulations in different climates. As such, depending on the climate and latitude, a higher temperature coefficient of the PV module may lead to higher energy yields, mostly during the colder season. We also demonstrate that, if higher temperature coefficients are accompanied by improved low-light performance (tunable using the module’s series resistance), the seasonal gain can be much higher. We indicate the relevance of our assumptions by basing the module performance in the simulations on (datasheets of) commercial modules.
Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2020License: CC BY NC NDFull-Text: https://trepo.tuni.fi/handle/10024/216760Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.06.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2020License: CC BY NC NDFull-Text: https://trepo.tuni.fi/handle/10024/216760Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.06.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 31 Aug 2020 Belgium, FinlandPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVAuthors: Manganiello, Patrizio; Govaerts, Jonathan; Horvath, Imre T.; Chowdhury, Mohammed Gofran; +7 AuthorsManganiello, Patrizio; Govaerts, Jonathan; Horvath, Imre T.; Chowdhury, Mohammed Gofran; Yordanov, Georgi H.; Goverde, Hans; Aldalali, Bader; Beausoleil-Morrison, Ian; Valkealahti, Seppo; Lappalainen, Kari; Poortmans, Jef;handle: 1942/32870
Currently, photovoltaic (PV) installations target a maximization of annual energy yield. In the future however, electricity generation may need to match better with the load profiles in a given environment and climate. In particular this will be a challenge for generation across the seasons, where electrical storage is less suitable, and in the built environment, where wind turbines for generation are much more difficult to integrate. In this paper we discuss how this challenge may be addressed with climate- and consumption-specific PV module technology. In particular, we demonstrate how the temperature coefficient of a PV system can impact the energy yield throughout the year. After explaining the concept, we apply our electrical-optical-thermal model to do very accurate physics-based bottom-up simulations in different climates. As such, depending on the climate and latitude, a higher temperature coefficient of the PV module may lead to higher energy yields, mostly during the colder season. We also demonstrate that, if higher temperature coefficients are accompanied by improved low-light performance (tunable using the module’s series resistance), the seasonal gain can be much higher. We indicate the relevance of our assumptions by basing the module performance in the simulations on (datasheets of) commercial modules.
Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2020License: CC BY NC NDFull-Text: https://trepo.tuni.fi/handle/10024/216760Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.06.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2020License: CC BY NC NDFull-Text: https://trepo.tuni.fi/handle/10024/216760Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.06.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:4TU.ResearchData van Nijen, David A.; Naoom, Salem; Muttillo, Mirco; Procel, Paul; Zeman, Miro; Isabella, Olindo; Manganiello, Patrizio;This package contains data and code associated with the publication "Analyzing the PN junction impedance of crystalline silicon solar cells across varied illumination and temperature conditions".The package contains:All the data and code underlying Table 1 of the manuscript.The experimentally recorded impedance data (.xlsx) as well as TCAD-generated admittance data (.csv). Two .m files (runnable in MATLAB) with which the equivalent circuits were fitted to the impedance data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/5b387cd1-9b99-4042-a7b5-e92f5ad198a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/5b387cd1-9b99-4042-a7b5-e92f5ad198a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:4TU.ResearchData van Nijen, David A.; Naoom, Salem; Muttillo, Mirco; Procel, Paul; Zeman, Miro; Isabella, Olindo; Manganiello, Patrizio;This package contains data and code associated with the publication "Analyzing the PN junction impedance of crystalline silicon solar cells across varied illumination and temperature conditions".The package contains:All the data and code underlying Table 1 of the manuscript.The experimentally recorded impedance data (.xlsx) as well as TCAD-generated admittance data (.csv). Two .m files (runnable in MATLAB) with which the equivalent circuits were fitted to the impedance data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/5b387cd1-9b99-4042-a7b5-e92f5ad198a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/5b387cd1-9b99-4042-a7b5-e92f5ad198a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Japan, NetherlandsPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVTakao Onoye; Ittetsu Taniguchi; Francky Catthoor; Francky Catthoor; Hans Goverde; Hans Goverde; Daichi Watari; Patrizio Manganiello; Patrizio Manganiello; Elham Shirazi; Elham Shirazi;Abstract We propose a multi-time scale energy management framework for a smart photovoltaic (PV) system that can calculate optimized schedules for battery operation, power purchases, and appliance usage. A smart PV system is a local energy community that includes several buildings and households equipped with PV panels and batteries. However, due to the unpredictability and fast variation of PV generation, maintaining energy balance and reducing electricity costs in the system is challenging. Our proposed framework employs a model predictive control approach with a physics-based PV forecasting model and an accurately parameterized battery model. We also introduce a multi-time scale structure composed of two-time scales: a longer coarse-grained time scale for daily horizon with 15-minutes resolution and a shorter fine-grained time scale for 15-minutes horizon with 1-second resolution. In contrast to the current single-time scale approaches, this alternative structure enables the management of a necessary mix of fast and slow system dynamics with reasonable computational times while maintaining high accuracy. Simulation results show that the proposed framework reduces electricity costs up 48.1% compared with baseline methods. The necessity of a multi-time scale and the impact on accurate system modeling in terms of PV forecasting and batteries are also demonstrated.
Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Japan, NetherlandsPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVTakao Onoye; Ittetsu Taniguchi; Francky Catthoor; Francky Catthoor; Hans Goverde; Hans Goverde; Daichi Watari; Patrizio Manganiello; Patrizio Manganiello; Elham Shirazi; Elham Shirazi;Abstract We propose a multi-time scale energy management framework for a smart photovoltaic (PV) system that can calculate optimized schedules for battery operation, power purchases, and appliance usage. A smart PV system is a local energy community that includes several buildings and households equipped with PV panels and batteries. However, due to the unpredictability and fast variation of PV generation, maintaining energy balance and reducing electricity costs in the system is challenging. Our proposed framework employs a model predictive control approach with a physics-based PV forecasting model and an accurately parameterized battery model. We also introduce a multi-time scale structure composed of two-time scales: a longer coarse-grained time scale for daily horizon with 15-minutes resolution and a shorter fine-grained time scale for 15-minutes horizon with 1-second resolution. In contrast to the current single-time scale approaches, this alternative structure enables the management of a necessary mix of fast and slow system dynamics with reasonable computational times while maintaining high accuracy. Simulation results show that the proposed framework reduces electricity costs up 48.1% compared with baseline methods. The necessity of a multi-time scale and the impact on accurate system modeling in terms of PV forecasting and batteries are also demonstrated.
Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 15 Powered bymore_vert Osaka University Kno... arrow_drop_down Osaka University Knowledge Archive (OUKA)ArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NetherlandsPublisher:Springer Science and Business Media LLC Andres Calcabrini; Mirco Muttillo; Miro Zeman; Patrizio Manganiello; Olindo Isabella;AbstractReconfigurable photovoltaic modules are a promising approach to improve the energy yield of partially shaded systems. So far, the feasibility of this concept has been evaluated through simulations or simplified experiments. In this work, we analyse the outdoor performance of a full-scale prototype of a series-parallel photovoltaic module with six reconfigurable blocks. Over a 4-month-long period, its performance was compared to a reference photovoltaic module with static interconnections and six bypass diodes. The results show that under partial shading, the reconfigurable module produced 10.2% more energy than the reference module. In contrast, under uniform illumination the energy yield of the reconfigurable PV module was 1.9% lower due to the additional losses introduced by its switching matrix. Finally, a modification in the reconfiguration algorithm is proposed to reduce the output current–voltage range of the module and simplify the design of module-level power converters while limiting the shading tolerance loss.
Nature Communication... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-43927-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 3 Powered bymore_vert Nature Communication... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-43927-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NetherlandsPublisher:Springer Science and Business Media LLC Andres Calcabrini; Mirco Muttillo; Miro Zeman; Patrizio Manganiello; Olindo Isabella;AbstractReconfigurable photovoltaic modules are a promising approach to improve the energy yield of partially shaded systems. So far, the feasibility of this concept has been evaluated through simulations or simplified experiments. In this work, we analyse the outdoor performance of a full-scale prototype of a series-parallel photovoltaic module with six reconfigurable blocks. Over a 4-month-long period, its performance was compared to a reference photovoltaic module with static interconnections and six bypass diodes. The results show that under partial shading, the reconfigurable module produced 10.2% more energy than the reference module. In contrast, under uniform illumination the energy yield of the reconfigurable PV module was 1.9% lower due to the additional losses introduced by its switching matrix. Finally, a modification in the reconfiguration algorithm is proposed to reduce the output current–voltage range of the module and simplify the design of module-level power converters while limiting the shading tolerance loss.
Nature Communication... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-43927-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 3 Powered bymore_vert Nature Communication... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-43927-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:4TU.ResearchData van Nijen, David A.; Saurabh Chakravarty; Voorn, Jim; Zeman, Miro; Isabella, Olindo; Manganiello, Patrizio;This package contains data and code associated with the publication "Feasibility study on photovoltaic module-integrated planar air-core inductors to facilitate embedded power electronics".The package contains:The employed COMSOL models (.mph) for simulating frequency-dependent inductance and resistance of planar inductors. The inductors are placed within a spherical air domain, with an infinite element domain at the outer boundary.The simulated inductor parameters and feasibility data reported in this study (.xlsx).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/b7267f87-15b1-4c97-b9b2-e3aeb95393ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/b7267f87-15b1-4c97-b9b2-e3aeb95393ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:4TU.ResearchData van Nijen, David A.; Saurabh Chakravarty; Voorn, Jim; Zeman, Miro; Isabella, Olindo; Manganiello, Patrizio;This package contains data and code associated with the publication "Feasibility study on photovoltaic module-integrated planar air-core inductors to facilitate embedded power electronics".The package contains:The employed COMSOL models (.mph) for simulating frequency-dependent inductance and resistance of planar inductors. The inductors are placed within a spherical air domain, with an infinite element domain at the outer boundary.The simulated inductor parameters and feasibility data reported in this study (.xlsx).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/b7267f87-15b1-4c97-b9b2-e3aeb95393ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/b7267f87-15b1-4c97-b9b2-e3aeb95393ac&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: SPAGNUOLO, Giovanni; PETRONE, GIOVANNI; Pietro Luigi Carotenuto; Patrizio Manganiello;handle: 11386/4254493
In many applications, the current versus voltage curve of a photovoltaic cell, module, string, or field is acquired. A high number of samples are usually acquired, but the curve contains the main information in the open- and short-circuit points, as well as where it has a strong change in the slope. In this paper, these parts are called “the fingerprint” of the photovoltaic generator. The fingerprint allows us to recognize the working conditions of the photovoltaic generator, e.g., if it is affected by a partial shadowing or not. Saving the fingerprint and discarding the other points of the original curve allows us to minimize the memory needs for storing the curve without losing the main information content. In this paper, a numerical technique for selecting, from among the samples of the acquired current versus voltage curve of any photovoltaic generator, the ones to be included in the fingerprint is proposed. The processing steps and the memory needed to achieve the result are minimized in order to allow an implementation of the algorithm also in a low-cost processor for on-field real-time applications. The technique is validated through curves generated by using analytical models as well as by means of some curves acquired experimentally in outdoor conditions.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di SalernoArticle . 2014Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2294759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di SalernoArticle . 2014Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2294759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: SPAGNUOLO, Giovanni; PETRONE, GIOVANNI; Pietro Luigi Carotenuto; Patrizio Manganiello;handle: 11386/4254493
In many applications, the current versus voltage curve of a photovoltaic cell, module, string, or field is acquired. A high number of samples are usually acquired, but the curve contains the main information in the open- and short-circuit points, as well as where it has a strong change in the slope. In this paper, these parts are called “the fingerprint” of the photovoltaic generator. The fingerprint allows us to recognize the working conditions of the photovoltaic generator, e.g., if it is affected by a partial shadowing or not. Saving the fingerprint and discarding the other points of the original curve allows us to minimize the memory needs for storing the curve without losing the main information content. In this paper, a numerical technique for selecting, from among the samples of the acquired current versus voltage curve of any photovoltaic generator, the ones to be included in the fingerprint is proposed. The processing steps and the memory needed to achieve the result are minimized in order to allow an implementation of the algorithm also in a low-cost processor for on-field real-time applications. The technique is validated through curves generated by using analytical models as well as by means of some curves acquired experimentally in outdoor conditions.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di SalernoArticle . 2014Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2294759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefArchivio della Ricerca - Università di SalernoArticle . 2014Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2294759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, BelgiumPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVGiel Van den Broeck; Marc Meuris; Marc Meuris; Jens Moschner; Mauricio Dalla Vecchia; Patrizio Manganiello; Georgi Hristov Yordanov; Simon Ravyts; Johan Driesen;handle: 1942/31810
Facade building-integrated photovoltaics is a technology that transforms a passive facade into a distributed, renewable electrical generator by the inclusion of solar cells in the building envelope. Partial shading due to nearby objects is a typical problem for facade building-integrated photovoltaics as it strongly reduces the output power of the installation. Distributed maximum power point tracking by means of embedded converters and a common direct current bus has been proposed to alleviate this issue. However, the bus voltage plays an important role in converter topology selection and overall efficiency, although this is not being covered in literature. Also the influence of the solar cell technology on the output voltage of the module is not studied before, although it strongly influences the converter topology selection and the losses. In this paper, a methodology is described to investigate the influence of the voltage level and solar cell technology by taking conversion losses in the converters and the cabling into account. The methodology is applied to two case study buildings for which four different cell technologies are considered. It is shown that overall high efficiencies are obtained, regardless of the voltage level. However, the loss distribution changes significantly with the voltage. This aspect can be used advantageously to reduce thermal stresses on the embedded converter. Furthermore, the overall system efficiency is typically higher when the voltage step-up is lower.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, BelgiumPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVGiel Van den Broeck; Marc Meuris; Marc Meuris; Jens Moschner; Mauricio Dalla Vecchia; Patrizio Manganiello; Georgi Hristov Yordanov; Simon Ravyts; Johan Driesen;handle: 1942/31810
Facade building-integrated photovoltaics is a technology that transforms a passive facade into a distributed, renewable electrical generator by the inclusion of solar cells in the building envelope. Partial shading due to nearby objects is a typical problem for facade building-integrated photovoltaics as it strongly reduces the output power of the installation. Distributed maximum power point tracking by means of embedded converters and a common direct current bus has been proposed to alleviate this issue. However, the bus voltage plays an important role in converter topology selection and overall efficiency, although this is not being covered in literature. Also the influence of the solar cell technology on the output voltage of the module is not studied before, although it strongly influences the converter topology selection and the losses. In this paper, a methodology is described to investigate the influence of the voltage level and solar cell technology by taking conversion losses in the converters and the cabling into account. The methodology is applied to two case study buildings for which four different cell technologies are considered. It is shown that overall high efficiencies are obtained, regardless of the voltage level. However, the loss distribution changes significantly with the voltage. This aspect can be used advantageously to reduce thermal stresses on the embedded converter. Furthermore, the overall system efficiency is typically higher when the voltage step-up is lower.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Authors: Hesan Ziar; Patrizio Manganiello; Olindo Isabella; Miro Zeman;doi: 10.1039/d0ee02491k
Electrification and digitization are two significant trends in the energy sector. Photovoltatronics unites these trends by combining solar electricity generation and information communication in PV-based intelligent energy agents.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02491k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 37 citations 37 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02491k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Authors: Hesan Ziar; Patrizio Manganiello; Olindo Isabella; Miro Zeman;doi: 10.1039/d0ee02491k
Electrification and digitization are two significant trends in the energy sector. Photovoltatronics unites these trends by combining solar electricity generation and information communication in PV-based intelligent energy agents.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02491k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 37 citations 37 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee02491k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2019Publisher:WIP Borgers, Tom; Govaerts, Jonathan; Van Dyck, Rik; El-Chami, Ibrahim; Nivelle, Philippe; van der Heide, Arvid; Voroshazi, Eszter; Manganiello, Patrizio; Szlufcik, Jozef; Poortmans, Jef; Bervoets, Robin; Vastmans, Luc; Moors, Reinoud; Doumen, Geert;In this paper an overview of interconnection technologies for bifacial and back-contacted (bifacial) cells in different stages of their development is reported, leading to a new technology suited for efficient interconnection of (bifacial) back-contact cells. 36th European Photovoltaic Solar Energy Conference and Exhibition; 1-5
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20192019-1ap.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 175visibility views 175 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20192019-1ap.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2019Publisher:WIP Borgers, Tom; Govaerts, Jonathan; Van Dyck, Rik; El-Chami, Ibrahim; Nivelle, Philippe; van der Heide, Arvid; Voroshazi, Eszter; Manganiello, Patrizio; Szlufcik, Jozef; Poortmans, Jef; Bervoets, Robin; Vastmans, Luc; Moors, Reinoud; Doumen, Geert;In this paper an overview of interconnection technologies for bifacial and back-contacted (bifacial) cells in different stages of their development is reported, leading to a new technology suited for efficient interconnection of (bifacial) back-contact cells. 36th European Photovoltaic Solar Energy Conference and Exhibition; 1-5
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20192019-1ap.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 175visibility views 175 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/eupvsec20192019-1ap.1.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Elsevier BV Funded by:FCT | D4FCT| D4Andres Calcabrini; Raoul Weegink; Patrizio Manganiello; Miro Zeman; Olindo Isabella;Urban environments present a great potential to generate electricity with photovoltaic technology. However, this electricity cannot be fully harvested using conventional solar modules that have been designed for open landscapes. In urban environments, photovoltaic modules can often be subject to partial shading caused by trees and building structures. Therefore, new photovoltaic module concepts and designs must be explored to increase the shading tolerance of PV modules. This study proposes a simple yet effective approach to compare the potential of different module topologies for maximising the electrical yield of partially shaded photovoltaic systems. Using this approach, the annual electrical performance of various PV module topologies in different urban environments and climates is simulated and compared to determine the potential benefit of using photovoltaic modules with new topologies. Results suggest that the shading tolerance of conventional solar modules can be significantly improved by adding only a few bypass diodes or parallel interconnections. It is shown that the yield of a partially shaded PV system endowed with conventional solar modules could be increased as much as 25% when shading is caused by nearby obstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Elsevier BV Funded by:FCT | D4FCT| D4Andres Calcabrini; Raoul Weegink; Patrizio Manganiello; Miro Zeman; Olindo Isabella;Urban environments present a great potential to generate electricity with photovoltaic technology. However, this electricity cannot be fully harvested using conventional solar modules that have been designed for open landscapes. In urban environments, photovoltaic modules can often be subject to partial shading caused by trees and building structures. Therefore, new photovoltaic module concepts and designs must be explored to increase the shading tolerance of PV modules. This study proposes a simple yet effective approach to compare the potential of different module topologies for maximising the electrical yield of partially shaded photovoltaic systems. Using this approach, the annual electrical performance of various PV module topologies in different urban environments and climates is simulated and compared to determine the potential benefit of using photovoltaic modules with new topologies. Results suggest that the shading tolerance of conventional solar modules can be significantly improved by adding only a few bypass diodes or parallel interconnections. It is shown that the yield of a partially shaded PV system endowed with conventional solar modules could be increased as much as 25% when shading is caused by nearby obstructions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.07.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 31 Aug 2020 Belgium, FinlandPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVAuthors: Manganiello, Patrizio; Govaerts, Jonathan; Horvath, Imre T.; Chowdhury, Mohammed Gofran; +7 AuthorsManganiello, Patrizio; Govaerts, Jonathan; Horvath, Imre T.; Chowdhury, Mohammed Gofran; Yordanov, Georgi H.; Goverde, Hans; Aldalali, Bader; Beausoleil-Morrison, Ian; Valkealahti, Seppo; Lappalainen, Kari; Poortmans, Jef;handle: 1942/32870
Currently, photovoltaic (PV) installations target a maximization of annual energy yield. In the future however, electricity generation may need to match better with the load profiles in a given environment and climate. In particular this will be a challenge for generation across the seasons, where electrical storage is less suitable, and in the built environment, where wind turbines for generation are much more difficult to integrate. In this paper we discuss how this challenge may be addressed with climate- and consumption-specific PV module technology. In particular, we demonstrate how the temperature coefficient of a PV system can impact the energy yield throughout the year. After explaining the concept, we apply our electrical-optical-thermal model to do very accurate physics-based bottom-up simulations in different climates. As such, depending on the climate and latitude, a higher temperature coefficient of the PV module may lead to higher energy yields, mostly during the colder season. We also demonstrate that, if higher temperature coefficients are accompanied by improved low-light performance (tunable using the module’s series resistance), the seasonal gain can be much higher. We indicate the relevance of our assumptions by basing the module performance in the simulations on (datasheets of) commercial modules.
Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2020License: CC BY NC NDFull-Text: https://trepo.tuni.fi/handle/10024/216760Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.06.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2020License: CC BY NC NDFull-Text: https://trepo.tuni.fi/handle/10024/216760Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.06.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 31 Aug 2020 Belgium, FinlandPublisher:Elsevier BV Funded by:EC | SRec BIPVEC| SRec BIPVAuthors: Manganiello, Patrizio; Govaerts, Jonathan; Horvath, Imre T.; Chowdhury, Mohammed Gofran; +7 AuthorsManganiello, Patrizio; Govaerts, Jonathan; Horvath, Imre T.; Chowdhury, Mohammed Gofran; Yordanov, Georgi H.; Goverde, Hans; Aldalali, Bader; Beausoleil-Morrison, Ian; Valkealahti, Seppo; Lappalainen, Kari; Poortmans, Jef;handle: 1942/32870
Currently, photovoltaic (PV) installations target a maximization of annual energy yield. In the future however, electricity generation may need to match better with the load profiles in a given environment and climate. In particular this will be a challenge for generation across the seasons, where electrical storage is less suitable, and in the built environment, where wind turbines for generation are much more difficult to integrate. In this paper we discuss how this challenge may be addressed with climate- and consumption-specific PV module technology. In particular, we demonstrate how the temperature coefficient of a PV system can impact the energy yield throughout the year. After explaining the concept, we apply our electrical-optical-thermal model to do very accurate physics-based bottom-up simulations in different climates. As such, depending on the climate and latitude, a higher temperature coefficient of the PV module may lead to higher energy yields, mostly during the colder season. We also demonstrate that, if higher temperature coefficients are accompanied by improved low-light performance (tunable using the module’s series resistance), the seasonal gain can be much higher. We indicate the relevance of our assumptions by basing the module performance in the simulations on (datasheets of) commercial modules.
Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2020License: CC BY NC NDFull-Text: https://trepo.tuni.fi/handle/10024/216760Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.06.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 9 Powered bymore_vert Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2020License: CC BY NC NDFull-Text: https://trepo.tuni.fi/handle/10024/216760Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Trepo - Institutional Repository of Tampere Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.06.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:4TU.ResearchData van Nijen, David A.; Naoom, Salem; Muttillo, Mirco; Procel, Paul; Zeman, Miro; Isabella, Olindo; Manganiello, Patrizio;This package contains data and code associated with the publication "Analyzing the PN junction impedance of crystalline silicon solar cells across varied illumination and temperature conditions".The package contains:All the data and code underlying Table 1 of the manuscript.The experimentally recorded impedance data (.xlsx) as well as TCAD-generated admittance data (.csv). Two .m files (runnable in MATLAB) with which the equivalent circuits were fitted to the impedance data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/5b387cd1-9b99-4042-a7b5-e92f5ad198a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/5b387cd1-9b99-4042-a7b5-e92f5ad198a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:4TU.ResearchData van Nijen, David A.; Naoom, Salem; Muttillo, Mirco; Procel, Paul; Zeman, Miro; Isabella, Olindo; Manganiello, Patrizio;This package contains data and code associated with the publication "Analyzing the PN junction impedance of crystalline silicon solar cells across varied illumination and temperature conditions".The package contains:All the data and code underlying Table 1 of the manuscript.The experimentally recorded impedance data (.xlsx) as well as TCAD-generated admittance data (.csv). Two .m files (runnable in MATLAB) with which the equivalent circuits were fitted to the impedance data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/5b387cd1-9b99-4042-a7b5-e92f5ad198a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/5b387cd1-9b99-4042-a7b5-e92f5ad198a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu