- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Wiley Simister, Rachel; Taylor, Michael W.; Tsai, Peter; Fan, Lu; Bruxner, Timothy J.; Crowe, Mark L.; Webster, Nicole;pmid: 23106937
SummaryMarine sponges are diverse, abundant and provide a crucial coupling point between benthic and pelagic habitats due to their high filtration rates. They also harbour extensive microbial communities, with many microbial phylotypes found exclusively in sponge hosts and not in the seawater or surrounding environment, i.e. so‐called sponge‐specific clusters (SCs) or sponge‐ and coral‐specific clusters (SCCs). We employed DNA (16S rRNA gene) and RNA (16S rRNA)‐based amplicon pyrosequencing to investigate the effects of sublethal thermal stress on the bacterial biosphere of the Great Barrier Reef sponge Rhopaloeides odorabile. A total of 8381 operational taxonomic units (OTUs) (97% sequence similarity) were identified, affiliated with 32 bacterial phyla from seawater samples, 23 bacterial phyla from sponge DNA extracts and 18 bacterial phyla from sponge RNA extracts. Sublethal thermal stress (31°C) had no effect on the present and/or active portions of the R. odorabile bacterial community but a shift in the bacterial assemblage was observed in necrotic sponges. Over two‐thirds of DNA and RNA sequences could be assigned to previously defined SCs/SCCs in healthy sponges whereas only 12% of reads from necrotic sponges could be assigned to SCs/SCCs. A rapid decline in host health over a 1°C temperature increment suggests that sponges such as R. odorabile may be highly vulnerable to the effects of global climate change.
Environmental Microb... arrow_drop_down Environmental MicrobiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Microb... arrow_drop_down Environmental MicrobiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2019Embargo end date: 01 Jan 2019 Australia, Australia, Netherlands, Australia, United States, Switzerland, United States, Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Ecology and biogeochemica...NSF| Ecology and biogeochemical impacts of DNA and RNA viruses throughout the global oceansVirginia I. Rich; David M. Karl; David S. Reay; Christine M. Foreman; Jennifer B. H. Martiny; Victoria J. Orphan; Philip W. Boyd; Brajesh K. Singh; Lisa Y. Stein; Britt Koskella; Eric A. Webb; Matthew B. Sullivan; Justin V. Remais; Matthew Baylis; Scott C. Weaver; David B. Mark Welch; Madeleine J. H. van Oppen; Madeleine J. H. van Oppen; Antje Boetius; Thomas W. Crowther; Janet K. Jansson; William J. Ripple; Roberto Danovaro; Kenneth N. Timmis; Jef Huisman; Aimée T. Classen; Mary Ann Moran; Lars R. Bakken; Frank J. Stewart; Ricardo Cavicchioli; Nicole S. Webster; Nicole S. Webster; Michael J. Behrenfeld; David A. Hutchins; Farooq Azam;pmid: 31213707
pmc: PMC7136171
In the Anthropocene, in which we now live, climate change is impacting most life on Earth. Microorganisms support the existence of all higher trophic life forms. To understand how humans and other life forms on Earth (including those we are yet to discover) can withstand anthropogenic climate change, it is vital to incorporate knowledge of the microbial ‘unseen majority’. We must learn not just how microorganisms affect climate change (including production and consumption of greenhouse gases) but also how they will be affected by climate change and other human activities. This Consensus Statement documents the central role and global importance of microorganisms in climate change biology. It also puts humanity on notice that the impact of climate change will depend heavily on responses of microorganisms, which are essential for achieving an environmentally sustainable future. Nature Reviews Microbiology, 17 (9) ISSN:1740-1526 ISSN:1740-1534
Caltech Authors arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/6443c56mData sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2019Full-Text: https://www.ncbi.nlm.nih.gov/pmc/PMC7136171Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/249800Data sources: Bielefeld Academic Search Engine (BASE)Nature Reviews MicrobiologyOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)Nature Reviews MicrobiologyReview . 2019License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0222-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,375 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Caltech Authors arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/6443c56mData sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2019Full-Text: https://www.ncbi.nlm.nih.gov/pmc/PMC7136171Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/249800Data sources: Bielefeld Academic Search Engine (BASE)Nature Reviews MicrobiologyOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)Nature Reviews MicrobiologyReview . 2019License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0222-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Webster, N.; Pantile, R.; Botte, E.; Abdo, D.; Andreakis, N.; Whalan, S.;doi: 10.1111/mec.12213
pmid: 23379529
AbstractSponges are abundant, diverse and functionally important components of aquatic biotopes with crucial associations for many reef fish and invertebrates. Sponges have strict temperature optima, and mass mortality events have occurred after unusually high temperatures. To assess how sponges may adapt to thermal stress associated with a changing climate, we applied gene expression profiling to both stages of their bipartite life cycles. Adult Rhopaloeides odorabile are highly sensitive to thermal stress (32 °C), yet their larvae can withstand temperatures up to 36 °C. Here, we reveal the molecular mechanisms that underpin these contrasting thermal tolerances, which may provide sponges with a means to successfully disperse into cooler waters. Heat shock protein 70 was induced by increasing temperature in adult sponges, and genes involved in important biological functions including cytoskeleton rearrangement, signal transduction, protein synthesis/degradation, oxidative stress and detoxification were all negatively correlated with temperature. Conversely, gene expression in larvae was not significantly affected until 36 °C when a stress response involving extremely rapid activation of heat shock proteins occurred. This study provides the first transcriptomic assessment of thermal stress on both life history stages of a marine invertebrate facilitating better predictions of the long‐term consequences of climate change for sponge population dynamics.
Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefSouthern Cross University: epublications@SCUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.12213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefSouthern Cross University: epublications@SCUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.12213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Wiley Funded by:ARC | Revealing the structure, ...ARC| Revealing the structure, evolution and sensitivity of symbioses in basal metazoaNicole S. Webster; Lisa Woods; James J. Bell; Christine Altenrath; Christine Altenrath; Simon K. Davy; Holly Bennett; Holly Bennett;doi: 10.1111/gcb.13474
pmid: 27550825
AbstractAs atmospheric CO2 concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef‐building corals globally, shifting reefs from coral‐dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field‐based evidence that sponges may be ‘winners’ in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. To determine the tolerance of adult sponges to climate change, four abundant Great Barrier Reef species were experimentally exposed to OW and OA levels predicted for 2100, under two CO2 Representative Concentration Pathways (RCPs). The impact of OW and OA on early life‐history stages was also assessed for one of these species to provide a more holistic view of species impacts. All species were generally unaffected by conditions predicted under RCP6.0, although environmental conditions projected under RCP8.5 caused significant adverse effects: with elevated temperature decreasing the survival of all species, increasing levels of tissue necrosis and bleaching, elevating respiration rates and decreasing photosynthetic rates. OA alone had little adverse effect, even under RCP8.5 concentrations. Importantly, the interactive effect of OW and OA varied between species with different nutritional modes, with elevated pCO2 exacerbating temperature stress in heterotrophic species but mitigating temperature stress in phototrophic species. This antagonistic interaction was reflected by reduced mortality, necrosis and bleaching of phototrophic species in the highest OW/OA treatment. Survival and settlement success of Carteriospongia foliascens larvae were unaffected by experimental treatments, and juvenile sponges exhibited greater tolerance to OW than their adult counterparts. With elevated pCO2 providing phototrophic species with protection from elevated temperature, across different life stages, climate change may ultimately drive a shift in the composition of sponge assemblages towards a dominance of phototrophic species.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Funded by:ARC | Revealing the structure, ...ARC| Revealing the structure, evolution and sensitivity of symbioses in basal metazoaSteve W Whalan; Blake D. Ramsby; Blake D. Ramsby; Nicole S. Webster; Nicole S. Webster; Mia O. Hoogenboom;doi: 10.1111/mec.14544
pmid: 29473977
AbstractBioeroding sponges break down calcium carbonate substratum, including coral skeleton, and their capacity for reef erosion is expected to increase in warmer and more acidic oceans. However, elevated temperature can disrupt the functionally important microbial symbionts of some sponge species, often with adverse consequences for host health. Here, we provide the first detailed description of the microbial community of the bioeroding spongeCliona orientalisand assess how the community responds to seawater temperatures incrementally increasing from 23°C to 32°C. The microbiome, identified using 16SrRNAgene sequencing, was dominated byAlphaproteobacteria, including a single operational taxonomic unit (OTU;Rhodothalassiumsp.) that represented 21% of all sequences. The “core” microbial community (taxa present in >80% of samples) included putative nitrogen fixers and ammonia oxidizers, suggesting that symbiotic nitrogen metabolism may be a key function of theC. orientalisholobiont. TheC. orientalismicrobiome was generally stable at temperatures up to 27°C; however, a community shift occurred at 29°C, including changes in the relative abundance and turnover of microbialOTUs. Notably, this microbial shift occurred at a lower temperature than the 32°C threshold that induced sponge bleaching, indicating that changes in the microbiome may play a role in the destabilization of theC. orientalisholobiont.C. orientalisfailed to regainSymbiodiniumor restore its baseline microbial community following bleaching, suggesting that the sponge has limited ability to recover from extreme thermal exposure, at least under aquarium conditions.
Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.14544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.14544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Bell, James J.; Davy, Simon K.; Jones, Timothy; Taylor, Michael W.; Webster, Nicole S.;doi: 10.1111/gcb.12212
pmid: 23553821
AbstractCoral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end‐Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge‐dominated period far surpasses that of alternative stable‐ecosystem or phase‐shift states reported on modern day coral reefs and, as such, a shift to sponge‐dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral‐ to sponge‐dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature andpH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu264 citations 264 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Oxford University Press (OUP) Michael Liu; Rachel L. Simister; Rachel L. Simister; Torsten Thomas; Lu Fan; Nicole S. Webster;Abstract Large-scale mortality of marine invertebrates is a major global concern for ocean ecosystems and many sessile, reef-building animals, such as sponges and corals, are experiencing significant declines through temperature-induced disease and bleaching. The health and survival of marine invertebrates is often dependent on intimate symbiotic associations with complex microbial communities, yet we have a very limited understanding of the detailed biology and ecology of both the host and the symbiont community in response to environmental stressors, such as elevated seawater temperatures. Here, we use the ecologically important sponge Rhopaloeides odorabile as a model to explore the changes in symbiosis during the development of temperature-induced necrosis. Expression profiling of the sponge host was examined in conjunction with the phylogenetic and functional structure and the expression profile of the symbiont community. Elevated temperature causes an immediate stress response in both the host and symbiont community, including reduced expression of functions that mediate their partnership. Disruption to nutritional interdependence and molecular interactions during early heat stress further destabilizes the holobiont, ultimately leading to the loss of archetypal sponge symbionts and the introduction of new microorganisms that have functional and expression profiles consistent with a scavenging lifestyle, a lack virulence functions and a high growth rate. Previous models have postulated various mechanisms of mortality and disease in marine invertebrates. Our study suggests that interruption of symbiotic interactions is a major determinant for mortality in marine sessile invertebrates. High symbiont specialization and low functional redundancy, thus make these holobionts extremely vulnerable to environmental perturbations, including climate change.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2013 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2012.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 194 citations 194 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2013 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2012.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Germany, AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Revealing the structure, ...ARC| Revealing the structure, evolution and sensitivity of symbioses in basal metazoaWebster, N. S.; Negri, A. P.; Botte, E. S.; Laffy, P. W.; Flores, F.; Noonan, S.; Schmidt, C.; Uthicke, S.;AbstractKey calcifying reef taxa are currently threatened by thermal stress associated with elevated sea surface temperatures (SST) and reduced calcification linked to ocean acidification (OA). Here we undertook an 8 week experimental exposure to near-future climate change conditions and explored the microbiome response of the corals Acropora millepora and Seriatopora hystrix, the crustose coralline algae Hydrolithon onkodes, the foraminifera Marginopora vertebralis and Heterostegina depressa and the sea urchin Echinometra sp. Microbial communities of all taxa were tolerant of elevated pCO2/reduced pH, exhibiting stable microbial communities between pH 8.1 (pCO2 479–499 μatm) and pH 7.9 (pCO2 738–835 μatm). In contrast, microbial communities of the CCA and foraminifera were sensitive to elevated seawater temperature, with a significant microbial shift involving loss of specific taxa and appearance of novel microbial groups occurring between 28 and 31 °C. An interactive effect between stressors was also identified, with distinct communities developing under different pCO2 conditions only evident at 31 °C. Microbiome analysis of key calcifying coral reef species under near-future climate conditions highlights the importance of assessing impacts from both increased SST and OA, as combinations of these global stressors can amplify microbial shifts which may have concomitant impacts for coral reef structure and function.
Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep19324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep19324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 AustraliaPublisher:Oxford University Press (OUP) Authors: Webster, Nicole S.; Cobb, Rose E.; Negri, Andrew P.;pmid: 18480849
Abstract The impact of elevated seawater temperature on bacterial communities within the marine sponge Rhopaloeides odorabile was assessed. Sponges were exposed to temperatures ranging between 27 and 33 °C. No differences in bacterial community composition or sponge health were detected in treatments between 27 and 31 °C. In contrast, sponges exposed to 33 °C exhibited a complete loss of the primary cultivated symbiont within 24 h and cellular necrosis after 3 days. Furthermore, denaturing gradient gel electrophoresis (DGGE) and clone sequence analysis detected a dramatic shift in bacterial community composition between 31 and 33 °C. Within the first 24 h most of the DGGE bands detected in samples from 27 to 31 °C were absent from the 33 °C sponges whereas eight bands were detected exclusively in the 33 °C sponges. The 16S rRNA sequencing revealed that most of the microbes from sponges exposed to 27–31 °C had highest homology to known sponge-associated bacteria. In contrast, many of the microbes from sponges exposed to 33 °C were similar to sequences previously retrieved from diseased and bleached corals. The 16S rRNA clone library analysis also detected a significant shift in bacterial community structure. The 27 °C library was composed of Proteobacteria, Actinobacteria, Nitrospira, Acidobacteria and Chloroflexi whereas the 33 °C library contained sequences from the Proteobacteria, Bacteroidetes and Firmicutes. The clear shifts in community composition at elevated temperatures can be attributed to the loss of symbionts and to the establishment of alien microbial populations including potential pathogens. Breakdown of symbioses and stress in the sponge occurred at temperatures identical to those reported for coral bleaching, indicating that sponges may be similarly threatened by climate change.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2008 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2008.42&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 197 citations 197 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2008 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2008.42&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 AustraliaPublisher:Wiley Webster, Nicole S.; Uthicke, Sven; Botte, Emanuelle S.; Flores, Florita; Negri, Andrew P.;AbstractCrustose coralline algae (CCA) are a critical component of coral reefs as they accrete carbonate for reef structure and act as settlement substrata for many invertebrates including corals. CCA host a diversity of microorganisms that can also play a role in coral settlement and metamorphosis processes. Although the sensitivity of CCA to ocean acidification (OA) is well established, the response of their associated microbial communities to reduced pH and increased CO2 was previously not known. Here we investigate the sensitivity of CCA‐associated microbial biofilms to OA and determine whether or not OA adversely affects the ability of CCA to induce coral larval metamorphosis. We experimentally exposed the CCA Hydrolithon onkodes to four pH/pCO2 conditions consistent with current IPCC predictions for the next few centuries (pH: 8.1, 7.9, 7.7, 7.5, pCO2: 464, 822, 1187, 1638 μatm). Settlement and metamorphosis of coral larvae was reduced on CCA pre‐exposed to pH 7.7 (pCO2 = 1187 μatm) and below over a 6‐week period. Additional experiments demonstrated that low pH treatments did not directly affect the ability of larvae to settle, but instead most likely altered the biochemistry of the CCA or its microbial associates. Detailed microbial community analysis of the CCA revealed diverse bacterial assemblages that altered significantly between pH 8.1 (pCO2 = 464 μatm) and pH 7.9 (pCO2 = 822 μatm) with this trend continuing at lower pH/higher pCO2 treatments. The shift in microbial community composition primarily comprised changes in the abundance of the dominant microbes between the different pH treatments and the appearance of new (but rare) microbes at pH 7.5. Microbial shifts and the concomitant reduced ability of CCA to induce coral settlement under OA conditions projected to occur by 2100 is a significant concern for the development, maintenance and recovery of reefs globally.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 128 citations 128 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Wiley Simister, Rachel; Taylor, Michael W.; Tsai, Peter; Fan, Lu; Bruxner, Timothy J.; Crowe, Mark L.; Webster, Nicole;pmid: 23106937
SummaryMarine sponges are diverse, abundant and provide a crucial coupling point between benthic and pelagic habitats due to their high filtration rates. They also harbour extensive microbial communities, with many microbial phylotypes found exclusively in sponge hosts and not in the seawater or surrounding environment, i.e. so‐called sponge‐specific clusters (SCs) or sponge‐ and coral‐specific clusters (SCCs). We employed DNA (16S rRNA gene) and RNA (16S rRNA)‐based amplicon pyrosequencing to investigate the effects of sublethal thermal stress on the bacterial biosphere of the Great Barrier Reef sponge Rhopaloeides odorabile. A total of 8381 operational taxonomic units (OTUs) (97% sequence similarity) were identified, affiliated with 32 bacterial phyla from seawater samples, 23 bacterial phyla from sponge DNA extracts and 18 bacterial phyla from sponge RNA extracts. Sublethal thermal stress (31°C) had no effect on the present and/or active portions of the R. odorabile bacterial community but a shift in the bacterial assemblage was observed in necrotic sponges. Over two‐thirds of DNA and RNA sequences could be assigned to previously defined SCs/SCCs in healthy sponges whereas only 12% of reads from necrotic sponges could be assigned to SCs/SCCs. A rapid decline in host health over a 1°C temperature increment suggests that sponges such as R. odorabile may be highly vulnerable to the effects of global climate change.
Environmental Microb... arrow_drop_down Environmental MicrobiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Microb... arrow_drop_down Environmental MicrobiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2019Embargo end date: 01 Jan 2019 Australia, Australia, Netherlands, Australia, United States, Switzerland, United States, Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Ecology and biogeochemica...NSF| Ecology and biogeochemical impacts of DNA and RNA viruses throughout the global oceansVirginia I. Rich; David M. Karl; David S. Reay; Christine M. Foreman; Jennifer B. H. Martiny; Victoria J. Orphan; Philip W. Boyd; Brajesh K. Singh; Lisa Y. Stein; Britt Koskella; Eric A. Webb; Matthew B. Sullivan; Justin V. Remais; Matthew Baylis; Scott C. Weaver; David B. Mark Welch; Madeleine J. H. van Oppen; Madeleine J. H. van Oppen; Antje Boetius; Thomas W. Crowther; Janet K. Jansson; William J. Ripple; Roberto Danovaro; Kenneth N. Timmis; Jef Huisman; Aimée T. Classen; Mary Ann Moran; Lars R. Bakken; Frank J. Stewart; Ricardo Cavicchioli; Nicole S. Webster; Nicole S. Webster; Michael J. Behrenfeld; David A. Hutchins; Farooq Azam;pmid: 31213707
pmc: PMC7136171
In the Anthropocene, in which we now live, climate change is impacting most life on Earth. Microorganisms support the existence of all higher trophic life forms. To understand how humans and other life forms on Earth (including those we are yet to discover) can withstand anthropogenic climate change, it is vital to incorporate knowledge of the microbial ‘unseen majority’. We must learn not just how microorganisms affect climate change (including production and consumption of greenhouse gases) but also how they will be affected by climate change and other human activities. This Consensus Statement documents the central role and global importance of microorganisms in climate change biology. It also puts humanity on notice that the impact of climate change will depend heavily on responses of microorganisms, which are essential for achieving an environmentally sustainable future. Nature Reviews Microbiology, 17 (9) ISSN:1740-1526 ISSN:1740-1534
Caltech Authors arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/6443c56mData sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2019Full-Text: https://www.ncbi.nlm.nih.gov/pmc/PMC7136171Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/249800Data sources: Bielefeld Academic Search Engine (BASE)Nature Reviews MicrobiologyOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)Nature Reviews MicrobiologyReview . 2019License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0222-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,375 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Caltech Authors arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/6443c56mData sources: Bielefeld Academic Search Engine (BASE)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2019Full-Text: https://www.ncbi.nlm.nih.gov/pmc/PMC7136171Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/11343/249800Data sources: Bielefeld Academic Search Engine (BASE)Nature Reviews MicrobiologyOther literature type . 2019Data sources: DANS (Data Archiving and Networked Services)Nature Reviews MicrobiologyReview . 2019License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-019-0222-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Webster, N.; Pantile, R.; Botte, E.; Abdo, D.; Andreakis, N.; Whalan, S.;doi: 10.1111/mec.12213
pmid: 23379529
AbstractSponges are abundant, diverse and functionally important components of aquatic biotopes with crucial associations for many reef fish and invertebrates. Sponges have strict temperature optima, and mass mortality events have occurred after unusually high temperatures. To assess how sponges may adapt to thermal stress associated with a changing climate, we applied gene expression profiling to both stages of their bipartite life cycles. Adult Rhopaloeides odorabile are highly sensitive to thermal stress (32 °C), yet their larvae can withstand temperatures up to 36 °C. Here, we reveal the molecular mechanisms that underpin these contrasting thermal tolerances, which may provide sponges with a means to successfully disperse into cooler waters. Heat shock protein 70 was induced by increasing temperature in adult sponges, and genes involved in important biological functions including cytoskeleton rearrangement, signal transduction, protein synthesis/degradation, oxidative stress and detoxification were all negatively correlated with temperature. Conversely, gene expression in larvae was not significantly affected until 36 °C when a stress response involving extremely rapid activation of heat shock proteins occurred. This study provides the first transcriptomic assessment of thermal stress on both life history stages of a marine invertebrate facilitating better predictions of the long‐term consequences of climate change for sponge population dynamics.
Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefSouthern Cross University: epublications@SCUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.12213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefSouthern Cross University: epublications@SCUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.12213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Wiley Funded by:ARC | Revealing the structure, ...ARC| Revealing the structure, evolution and sensitivity of symbioses in basal metazoaNicole S. Webster; Lisa Woods; James J. Bell; Christine Altenrath; Christine Altenrath; Simon K. Davy; Holly Bennett; Holly Bennett;doi: 10.1111/gcb.13474
pmid: 27550825
AbstractAs atmospheric CO2 concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef‐building corals globally, shifting reefs from coral‐dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field‐based evidence that sponges may be ‘winners’ in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. To determine the tolerance of adult sponges to climate change, four abundant Great Barrier Reef species were experimentally exposed to OW and OA levels predicted for 2100, under two CO2 Representative Concentration Pathways (RCPs). The impact of OW and OA on early life‐history stages was also assessed for one of these species to provide a more holistic view of species impacts. All species were generally unaffected by conditions predicted under RCP6.0, although environmental conditions projected under RCP8.5 caused significant adverse effects: with elevated temperature decreasing the survival of all species, increasing levels of tissue necrosis and bleaching, elevating respiration rates and decreasing photosynthetic rates. OA alone had little adverse effect, even under RCP8.5 concentrations. Importantly, the interactive effect of OW and OA varied between species with different nutritional modes, with elevated pCO2 exacerbating temperature stress in heterotrophic species but mitigating temperature stress in phototrophic species. This antagonistic interaction was reflected by reduced mortality, necrosis and bleaching of phototrophic species in the highest OW/OA treatment. Survival and settlement success of Carteriospongia foliascens larvae were unaffected by experimental treatments, and juvenile sponges exhibited greater tolerance to OW than their adult counterparts. With elevated pCO2 providing phototrophic species with protection from elevated temperature, across different life stages, climate change may ultimately drive a shift in the composition of sponge assemblages towards a dominance of phototrophic species.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Funded by:ARC | Revealing the structure, ...ARC| Revealing the structure, evolution and sensitivity of symbioses in basal metazoaSteve W Whalan; Blake D. Ramsby; Blake D. Ramsby; Nicole S. Webster; Nicole S. Webster; Mia O. Hoogenboom;doi: 10.1111/mec.14544
pmid: 29473977
AbstractBioeroding sponges break down calcium carbonate substratum, including coral skeleton, and their capacity for reef erosion is expected to increase in warmer and more acidic oceans. However, elevated temperature can disrupt the functionally important microbial symbionts of some sponge species, often with adverse consequences for host health. Here, we provide the first detailed description of the microbial community of the bioeroding spongeCliona orientalisand assess how the community responds to seawater temperatures incrementally increasing from 23°C to 32°C. The microbiome, identified using 16SrRNAgene sequencing, was dominated byAlphaproteobacteria, including a single operational taxonomic unit (OTU;Rhodothalassiumsp.) that represented 21% of all sequences. The “core” microbial community (taxa present in >80% of samples) included putative nitrogen fixers and ammonia oxidizers, suggesting that symbiotic nitrogen metabolism may be a key function of theC. orientalisholobiont. TheC. orientalismicrobiome was generally stable at temperatures up to 27°C; however, a community shift occurred at 29°C, including changes in the relative abundance and turnover of microbialOTUs. Notably, this microbial shift occurred at a lower temperature than the 32°C threshold that induced sponge bleaching, indicating that changes in the microbiome may play a role in the destabilization of theC. orientalisholobiont.C. orientalisfailed to regainSymbiodiniumor restore its baseline microbial community following bleaching, suggesting that the sponge has limited ability to recover from extreme thermal exposure, at least under aquarium conditions.
Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.14544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Southern Cross University: epublications@SCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.14544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Bell, James J.; Davy, Simon K.; Jones, Timothy; Taylor, Michael W.; Webster, Nicole S.;doi: 10.1111/gcb.12212
pmid: 23553821
AbstractCoral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end‐Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge‐dominated period far surpasses that of alternative stable‐ecosystem or phase‐shift states reported on modern day coral reefs and, as such, a shift to sponge‐dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral‐ to sponge‐dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature andpH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu264 citations 264 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Oxford University Press (OUP) Michael Liu; Rachel L. Simister; Rachel L. Simister; Torsten Thomas; Lu Fan; Nicole S. Webster;Abstract Large-scale mortality of marine invertebrates is a major global concern for ocean ecosystems and many sessile, reef-building animals, such as sponges and corals, are experiencing significant declines through temperature-induced disease and bleaching. The health and survival of marine invertebrates is often dependent on intimate symbiotic associations with complex microbial communities, yet we have a very limited understanding of the detailed biology and ecology of both the host and the symbiont community in response to environmental stressors, such as elevated seawater temperatures. Here, we use the ecologically important sponge Rhopaloeides odorabile as a model to explore the changes in symbiosis during the development of temperature-induced necrosis. Expression profiling of the sponge host was examined in conjunction with the phylogenetic and functional structure and the expression profile of the symbiont community. Elevated temperature causes an immediate stress response in both the host and symbiont community, including reduced expression of functions that mediate their partnership. Disruption to nutritional interdependence and molecular interactions during early heat stress further destabilizes the holobiont, ultimately leading to the loss of archetypal sponge symbionts and the introduction of new microorganisms that have functional and expression profiles consistent with a scavenging lifestyle, a lack virulence functions and a high growth rate. Previous models have postulated various mechanisms of mortality and disease in marine invertebrates. Our study suggests that interruption of symbiotic interactions is a major determinant for mortality in marine sessile invertebrates. High symbiont specialization and low functional redundancy, thus make these holobionts extremely vulnerable to environmental perturbations, including climate change.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2013 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2012.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 194 citations 194 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2013 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2012.165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Germany, AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Revealing the structure, ...ARC| Revealing the structure, evolution and sensitivity of symbioses in basal metazoaWebster, N. S.; Negri, A. P.; Botte, E. S.; Laffy, P. W.; Flores, F.; Noonan, S.; Schmidt, C.; Uthicke, S.;AbstractKey calcifying reef taxa are currently threatened by thermal stress associated with elevated sea surface temperatures (SST) and reduced calcification linked to ocean acidification (OA). Here we undertook an 8 week experimental exposure to near-future climate change conditions and explored the microbiome response of the corals Acropora millepora and Seriatopora hystrix, the crustose coralline algae Hydrolithon onkodes, the foraminifera Marginopora vertebralis and Heterostegina depressa and the sea urchin Echinometra sp. Microbial communities of all taxa were tolerant of elevated pCO2/reduced pH, exhibiting stable microbial communities between pH 8.1 (pCO2 479–499 μatm) and pH 7.9 (pCO2 738–835 μatm). In contrast, microbial communities of the CCA and foraminifera were sensitive to elevated seawater temperature, with a significant microbial shift involving loss of specific taxa and appearance of novel microbial groups occurring between 28 and 31 °C. An interactive effect between stressors was also identified, with distinct communities developing under different pCO2 conditions only evident at 31 °C. Microbiome analysis of key calcifying coral reef species under near-future climate conditions highlights the importance of assessing impacts from both increased SST and OA, as combinations of these global stressors can amplify microbial shifts which may have concomitant impacts for coral reef structure and function.
Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep19324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep19324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 AustraliaPublisher:Oxford University Press (OUP) Authors: Webster, Nicole S.; Cobb, Rose E.; Negri, Andrew P.;pmid: 18480849
Abstract The impact of elevated seawater temperature on bacterial communities within the marine sponge Rhopaloeides odorabile was assessed. Sponges were exposed to temperatures ranging between 27 and 33 °C. No differences in bacterial community composition or sponge health were detected in treatments between 27 and 31 °C. In contrast, sponges exposed to 33 °C exhibited a complete loss of the primary cultivated symbiont within 24 h and cellular necrosis after 3 days. Furthermore, denaturing gradient gel electrophoresis (DGGE) and clone sequence analysis detected a dramatic shift in bacterial community composition between 31 and 33 °C. Within the first 24 h most of the DGGE bands detected in samples from 27 to 31 °C were absent from the 33 °C sponges whereas eight bands were detected exclusively in the 33 °C sponges. The 16S rRNA sequencing revealed that most of the microbes from sponges exposed to 27–31 °C had highest homology to known sponge-associated bacteria. In contrast, many of the microbes from sponges exposed to 33 °C were similar to sequences previously retrieved from diseased and bleached corals. The 16S rRNA clone library analysis also detected a significant shift in bacterial community structure. The 27 °C library was composed of Proteobacteria, Actinobacteria, Nitrospira, Acidobacteria and Chloroflexi whereas the 33 °C library contained sequences from the Proteobacteria, Bacteroidetes and Firmicutes. The clear shifts in community composition at elevated temperatures can be attributed to the loss of symbionts and to the establishment of alien microbial populations including potential pathogens. Breakdown of symbioses and stress in the sponge occurred at temperatures identical to those reported for coral bleaching, indicating that sponges may be similarly threatened by climate change.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2008 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2008.42&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 197 citations 197 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2008 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2008.42&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 AustraliaPublisher:Wiley Webster, Nicole S.; Uthicke, Sven; Botte, Emanuelle S.; Flores, Florita; Negri, Andrew P.;AbstractCrustose coralline algae (CCA) are a critical component of coral reefs as they accrete carbonate for reef structure and act as settlement substrata for many invertebrates including corals. CCA host a diversity of microorganisms that can also play a role in coral settlement and metamorphosis processes. Although the sensitivity of CCA to ocean acidification (OA) is well established, the response of their associated microbial communities to reduced pH and increased CO2 was previously not known. Here we investigate the sensitivity of CCA‐associated microbial biofilms to OA and determine whether or not OA adversely affects the ability of CCA to induce coral larval metamorphosis. We experimentally exposed the CCA Hydrolithon onkodes to four pH/pCO2 conditions consistent with current IPCC predictions for the next few centuries (pH: 8.1, 7.9, 7.7, 7.5, pCO2: 464, 822, 1187, 1638 μatm). Settlement and metamorphosis of coral larvae was reduced on CCA pre‐exposed to pH 7.7 (pCO2 = 1187 μatm) and below over a 6‐week period. Additional experiments demonstrated that low pH treatments did not directly affect the ability of larvae to settle, but instead most likely altered the biochemistry of the CCA or its microbial associates. Detailed microbial community analysis of the CCA revealed diverse bacterial assemblages that altered significantly between pH 8.1 (pCO2 = 464 μatm) and pH 7.9 (pCO2 = 822 μatm) with this trend continuing at lower pH/higher pCO2 treatments. The shift in microbial community composition primarily comprised changes in the abundance of the dominant microbes between the different pH treatments and the appearance of new (but rare) microbes at pH 7.5. Microbial shifts and the concomitant reduced ability of CCA to induce coral settlement under OA conditions projected to occur by 2100 is a significant concern for the development, maintenance and recovery of reefs globally.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 128 citations 128 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu