- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Wiley Funded by:AKA | Towards adaptive nanoelec..., EC | SINNCE, AKA | Lead-free flexoelectric c... +2 projectsAKA| Towards adaptive nanoelectronic devices by mechanical control of ferroelectric domains ,EC| SINNCE ,AKA| Lead-free flexoelectric composites (LEAP) ,AKA| Lead-free flexoelectric composites (LEAP) ,EC| NextGEnergyYang Bai; Pavel Tofel; Jaakko Palosaari; Heli Jantunen; Jari Juuti;pmid: 28585344
An ABO3‐type perovskite solid‐solution, (K0.5Na0.5)NbO3 (KNN) doped with 2 mol% Ba(Ni0.5Nb0.5)O3−δ (BNNO) is reported. Such a composition yields a much narrower bandgap (≈1.6 eV) compared to the parental composition—pure KNN—and other widely used piezoelectric and pyroelectric materials (e.g., Pb(Zr,Ti)O3, BaTiO3). Meanwhile, it exhibits the same large piezoelectric coefficient as that of KNN (≈100 pC N−1) and a much larger pyroelectric coefficient (≈130 µC m−2 K−1) compared to the previously reported narrow‐bandgap material (KNbO3)1−x‐BNNOx. The unique combination of these excellent ferroelectric and optical properties opens the door to the development of multisource energy harvesting or multifunctional sensing devices for the simultaneous and efficient conversion of solar, thermal, and kinetic energies into electricity in a single material. Individual and comprehensive characterizations of the optical, ferroelectric, piezoelectric, pyroelectric, and photovoltaic properties are investigated with single and coexisting energy sources. No degrading interaction between ferroelectric and photovoltaic behaviors is observed. This composition may fundamentally change the working principles of state‐of‐the‐art hybrid energy harvesters and sensors, and thus significantly increases the unit‐volume energy conversion efficiency and reliability of energy harvesters in ambient environments.
Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2017Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201700767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2017Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201700767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Elsevier BV Yang Bai; Pavel Tofel; Zdenek Hadas; Jan Smilek; Petr Losak; Pavel Skarvada; Robert Macku;Abstract The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.
University of Oulu R... arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaMechanical Systems and Signal ProcessingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2018.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Oulu R... arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaMechanical Systems and Signal ProcessingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2018.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Pavel Tofel; Pavel Tofel; Jaakko Palosaari; Jari Juuti; Yang Bai;Single‐source energy harvesters that convert solar, thermal, or kinetic energy into electricity for small‐scale smart electronic devices and wireless sensor networks have been under development for decades. When an individual energy source is insufficient for the required electricity generation, multi‐source energy harvesting is indicated. Current technology usually combines different individual harvesters to achieve the capability of harvesting multiple energy sources simultaneously. However, this increases the overall size of the multi‐source harvester, but in microelectronics miniaturization is a critical consideration. Herein, an advanced approach is demonstrated to solve this issue. A single‐material energy harvesting/sensing device is fabricated using a (K0.5Na0.5)NbO3‐Ba(Ni0.5Nb0.5)O3–Δ (KNBNNO) ceramic as the sole energy‐conversion component. This single‐material component is able simultaneously to harvest or sense solar (visible light), thermal (temperature fluctuation), and kinetic (vibration) energy sources by incorporating its photovoltaic, pyroelectric, and piezoelectric effects, respectively. The interactions between different energy conversion effects, e.g., the influence of dynamic behavior on the photovoltaic effect and alternating current–direct current (AC–DC) signal trade‐offs, are assessed and discussed. This research is expected to stimulate energy‐efficient design of electronic devices by integrating both harvesting and sensing functions in the same material/component.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2020 Sweden, Portugal, Croatia, Czech Republic, Croatia, Czech RepublicPublisher:MDPI AG Publicly fundedSaša Zelenika; Zdenek Hadas; Sebastian Bader; Thomas Becker; Petar Gljušćić; Jiri Hlinka; Ludek Janak; Ervin Kamenar; Filip Ksica; Theodora Kyratsi; Loucas Louca; Miroslav Mrlik; Adnan Osmanović; Vikram Pakrashi; Ondrej Rubes; Oldřich Ševeček; José Silva; Pavel Tofel; Bojan Trkulja; Runar Unnthorsson; Jasmin Velagić; Željko Vrcan;With the aim of increasing the efficiency of maintenance and fuel usage in airplanes, structural health monitoring (SHM) of critical composite structures is increasingly expected and required. The optimized usage of this concept is subject of intensive work in the framework of the EU COST Action CA18203 “Optimising Design for Inspection” (ODIN). In this context, a thorough review of a broad range of energy harvesting (EH) technologies to be potentially used as power sources for the acoustic emission and guided wave propagation sensors of the considered SHM systems, as well as for the respective data elaboration and wireless communication modules, is provided in this work. EH devices based on the usage of kinetic energy, thermal gradients, solar radiation, airflow, and other viable energy sources, proposed so far in the literature, are thus described with a critical review of the respective specific power levels, of their potential placement on airplanes, as well as the consequently necessary power management architectures. The guidelines provided for the selection of the most appropriate EH and power management technologies create the preconditions to develop a new class of autonomous sensor nodes for the in-process, non-destructive SHM of airplane components.
Mid Sweden Universit... arrow_drop_down Mid Sweden University: Publications (DiVA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIReview . 2020Data sources: Croatian Scientific Bibliography - CROSBIUniversidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20226685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Mid Sweden Universit... arrow_drop_down Mid Sweden University: Publications (DiVA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIReview . 2020Data sources: Croatian Scientific Bibliography - CROSBIUniversidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20226685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Wiley Funded by:AKA | Towards adaptive nanoelec..., EC | SINNCE, AKA | Lead-free flexoelectric c... +2 projectsAKA| Towards adaptive nanoelectronic devices by mechanical control of ferroelectric domains ,EC| SINNCE ,AKA| Lead-free flexoelectric composites (LEAP) ,AKA| Lead-free flexoelectric composites (LEAP) ,EC| NextGEnergyYang Bai; Pavel Tofel; Jaakko Palosaari; Heli Jantunen; Jari Juuti;pmid: 28585344
An ABO3‐type perovskite solid‐solution, (K0.5Na0.5)NbO3 (KNN) doped with 2 mol% Ba(Ni0.5Nb0.5)O3−δ (BNNO) is reported. Such a composition yields a much narrower bandgap (≈1.6 eV) compared to the parental composition—pure KNN—and other widely used piezoelectric and pyroelectric materials (e.g., Pb(Zr,Ti)O3, BaTiO3). Meanwhile, it exhibits the same large piezoelectric coefficient as that of KNN (≈100 pC N−1) and a much larger pyroelectric coefficient (≈130 µC m−2 K−1) compared to the previously reported narrow‐bandgap material (KNbO3)1−x‐BNNOx. The unique combination of these excellent ferroelectric and optical properties opens the door to the development of multisource energy harvesting or multifunctional sensing devices for the simultaneous and efficient conversion of solar, thermal, and kinetic energies into electricity in a single material. Individual and comprehensive characterizations of the optical, ferroelectric, piezoelectric, pyroelectric, and photovoltaic properties are investigated with single and coexisting energy sources. No degrading interaction between ferroelectric and photovoltaic behaviors is observed. This composition may fundamentally change the working principles of state‐of‐the‐art hybrid energy harvesters and sensors, and thus significantly increases the unit‐volume energy conversion efficiency and reliability of energy harvesters in ambient environments.
Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2017Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201700767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 120 citations 120 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Materials arrow_drop_down University of Oulu Repository - JultikaArticle . 2017Data sources: University of Oulu Repository - JultikaAdvanced MaterialsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201700767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Elsevier BV Yang Bai; Pavel Tofel; Zdenek Hadas; Jan Smilek; Petr Losak; Pavel Skarvada; Robert Macku;Abstract The capability of using a linear kinetic energy harvester – A cantilever structured piezoelectric energy harvester – to harvest human motions in the real-life activities is investigated. The whole loop of the design, simulation, fabrication and test of the energy harvester is presented. With the smart wristband/watch sized energy harvester, a root mean square of the output power of 50 μW is obtained from the real-life hand-arm motion in human’s daily life. Such a power is enough to make some low power consumption sensors to be self-powered. This paper provides a good and reliable comparison to those with nonlinear structures. It also helps the designers to consider whether to choose a nonlinear structure or not in a particular energy harvester based on different application scenarios.
University of Oulu R... arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaMechanical Systems and Signal ProcessingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2018.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Oulu R... arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - JultikaMechanical Systems and Signal ProcessingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2018.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Pavel Tofel; Pavel Tofel; Jaakko Palosaari; Jari Juuti; Yang Bai;Single‐source energy harvesters that convert solar, thermal, or kinetic energy into electricity for small‐scale smart electronic devices and wireless sensor networks have been under development for decades. When an individual energy source is insufficient for the required electricity generation, multi‐source energy harvesting is indicated. Current technology usually combines different individual harvesters to achieve the capability of harvesting multiple energy sources simultaneously. However, this increases the overall size of the multi‐source harvester, but in microelectronics miniaturization is a critical consideration. Herein, an advanced approach is demonstrated to solve this issue. A single‐material energy harvesting/sensing device is fabricated using a (K0.5Na0.5)NbO3‐Ba(Ni0.5Nb0.5)O3–Δ (KNBNNO) ceramic as the sole energy‐conversion component. This single‐material component is able simultaneously to harvest or sense solar (visible light), thermal (temperature fluctuation), and kinetic (vibration) energy sources by incorporating its photovoltaic, pyroelectric, and piezoelectric effects, respectively. The interactions between different energy conversion effects, e.g., the influence of dynamic behavior on the photovoltaic effect and alternating current–direct current (AC–DC) signal trade‐offs, are assessed and discussed. This research is expected to stimulate energy‐efficient design of electronic devices by integrating both harvesting and sensing functions in the same material/component.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2020 Sweden, Portugal, Croatia, Czech Republic, Croatia, Czech RepublicPublisher:MDPI AG Publicly fundedSaša Zelenika; Zdenek Hadas; Sebastian Bader; Thomas Becker; Petar Gljušćić; Jiri Hlinka; Ludek Janak; Ervin Kamenar; Filip Ksica; Theodora Kyratsi; Loucas Louca; Miroslav Mrlik; Adnan Osmanović; Vikram Pakrashi; Ondrej Rubes; Oldřich Ševeček; José Silva; Pavel Tofel; Bojan Trkulja; Runar Unnthorsson; Jasmin Velagić; Željko Vrcan;With the aim of increasing the efficiency of maintenance and fuel usage in airplanes, structural health monitoring (SHM) of critical composite structures is increasingly expected and required. The optimized usage of this concept is subject of intensive work in the framework of the EU COST Action CA18203 “Optimising Design for Inspection” (ODIN). In this context, a thorough review of a broad range of energy harvesting (EH) technologies to be potentially used as power sources for the acoustic emission and guided wave propagation sensors of the considered SHM systems, as well as for the respective data elaboration and wireless communication modules, is provided in this work. EH devices based on the usage of kinetic energy, thermal gradients, solar radiation, airflow, and other viable energy sources, proposed so far in the literature, are thus described with a critical review of the respective specific power levels, of their potential placement on airplanes, as well as the consequently necessary power management architectures. The guidelines provided for the selection of the most appropriate EH and power management technologies create the preconditions to develop a new class of autonomous sensor nodes for the in-process, non-destructive SHM of airplane components.
Mid Sweden Universit... arrow_drop_down Mid Sweden University: Publications (DiVA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIReview . 2020Data sources: Croatian Scientific Bibliography - CROSBIUniversidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20226685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Mid Sweden Universit... arrow_drop_down Mid Sweden University: Publications (DiVA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIReview . 2020Data sources: Croatian Scientific Bibliography - CROSBIUniversidade do Minho: RepositoriUMArticle . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2020License: CC BYData sources: Universidade do Minho: RepositoriUMDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20226685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu