- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 France, AustriaPublisher:Center for Global Trade Analysis Delzeit, Ruth; Beach, Roberto; Bibas, Ruben; Britz, Wolfgang; Chateau, Jean; Freund, Florian; Lefevre, Julien; Schuenemann, Franziska; Sulser, Timothy; Valin, Hugo; van Ruijven, Bas; Weitzel, Matthias; Willenbockel, Dirk; Wojtowicz, Krzysztof;handle: 10419/228648
When modelling medium and long-term challenges we need a reference path of economic development (the so-called baseline). Because sectoral models often offer a more fundamental understanding of future developments for specific sectors, many CGE modeling teams have adopted different kinds of linking approaches to sectoral models to generate baselines. We systematically compare and discuss approaches of linking CGE models for the baseline calibration procedure, and discuss best practices and pitfalls. We identify different types of linking approaches which we divide into a) links with partial equilibrium models, and b) links with non-economic models. These two types of linking approaches are then analyzed with respect to e.g. the degree of linkage, information exchanged, as well as compromises in aggregations and definitions. Based on this, we discuss potential drawbacks and conclude with suggestions for best practices and research recommendations.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03128285Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21642/jgea.050105af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03128285Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21642/jgea.050105af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Germany, France, France, France, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Leblanc, Florian; Bibas, Ruben; Mima, Silvana; Muratori, Matteo; Sakamoto, Shogo; Sano, Fuminori; Bauer, Nico; Daioglou, Vassilis; Fujimori, Shinichiro; Gidden, Matthew; Kato, Estsushi; Rose, Steven; Tsutsui, Junichi; van Vuuren, Detlef; Weyant, John; Wise, Marshall;The expected growth in the demand for passenger and freight services exacerbates the challenges of reducing transport GHG emissions, especially as commercial low-carbon alternatives to petroleum fuels are limited for shipping, air and long-distance road travel. Biofuels can offer a pathway to significantly reduce emissions from these sectors, as they can easily substitute for conventional liquid fuels in internal combustion engines. In this paper, we assess the potential of bioenergy to reduce transport GHG emissions through an analysis leveraging various integrated assessment models and scenarios, as part of the 33rd Energy Modeling Forum study (EMF-33). We find that bioenergy can contribute a significant, albeit not dominant, proportion of energy supply to the future transport sector: in scenarios aiming to keep the temperature increase below 2 °C by the end of the twenty-first century, models project that in 2100 bioenergy can provide on average 42 EJ/yr (ranging from 5 to 85 EJ/yr) for transport (compared to 3.7 EJ in 2018), mainly through lignocellulosic fuels. This makes up 9–62% of final transport energy use. Only a small amount of bioenergy is projected to be used in transport through electricity and hydrogen pathways, with a larger role for biofuels in road passenger transport than in freight. The association of carbon capture and storage (CCS) with bioenergy technologies (BECCS) is a key determinant in the role of biofuels in transport, because of the competition for biomass feedstock to provide other final energy carriers along with carbon removal. Among models that consider CCS in the biofuel conversion process the average market share of biofuels is 21% in 2100 (ranging from 2 to 44%), compared to 10% (0–30%) for models that do not. Cumulative direct emissions from the transport sector account for half of the emission budget (from 306 to 776 out of 1,000 GtCO2). However, the carbon intensity of transport decreases as much as other energy sectors in 2100 when accounting for process emissions, including carbon removal from BECCS. Lignocellulosic fuels become more attractive for transport decarbonization if BECCS is not feasible for any energy sectors. Since global transport service demand increases and biomass supply is limited, its allocation to and within the transport sector is uncertain and sensitive to assumptions about political as well as technological and socioeconomic factors.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03558507Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03558507Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03245-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03558507Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03558507Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03245-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 France, AustriaPublisher:Center for Global Trade Analysis Delzeit, Ruth; Beach, Roberto; Bibas, Ruben; Britz, Wolfgang; Chateau, Jean; Freund, Florian; Lefevre, Julien; Schuenemann, Franziska; Sulser, Timothy; Valin, Hugo; van Ruijven, Bas; Weitzel, Matthias; Willenbockel, Dirk; Wojtowicz, Krzysztof;handle: 10419/228648
When modelling medium and long-term challenges we need a reference path of economic development (the so-called baseline). Because sectoral models often offer a more fundamental understanding of future developments for specific sectors, many CGE modeling teams have adopted different kinds of linking approaches to sectoral models to generate baselines. We systematically compare and discuss approaches of linking CGE models for the baseline calibration procedure, and discuss best practices and pitfalls. We identify different types of linking approaches which we divide into a) links with partial equilibrium models, and b) links with non-economic models. These two types of linking approaches are then analyzed with respect to e.g. the degree of linkage, information exchanged, as well as compromises in aggregations and definitions. Based on this, we discuss potential drawbacks and conclude with suggestions for best practices and research recommendations.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03128285Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21642/jgea.050105af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03128285Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21642/jgea.050105af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Germany, France, France, France, Netherlands, NetherlandsPublisher:Springer Science and Business Media LLC Leblanc, Florian; Bibas, Ruben; Mima, Silvana; Muratori, Matteo; Sakamoto, Shogo; Sano, Fuminori; Bauer, Nico; Daioglou, Vassilis; Fujimori, Shinichiro; Gidden, Matthew; Kato, Estsushi; Rose, Steven; Tsutsui, Junichi; van Vuuren, Detlef; Weyant, John; Wise, Marshall;The expected growth in the demand for passenger and freight services exacerbates the challenges of reducing transport GHG emissions, especially as commercial low-carbon alternatives to petroleum fuels are limited for shipping, air and long-distance road travel. Biofuels can offer a pathway to significantly reduce emissions from these sectors, as they can easily substitute for conventional liquid fuels in internal combustion engines. In this paper, we assess the potential of bioenergy to reduce transport GHG emissions through an analysis leveraging various integrated assessment models and scenarios, as part of the 33rd Energy Modeling Forum study (EMF-33). We find that bioenergy can contribute a significant, albeit not dominant, proportion of energy supply to the future transport sector: in scenarios aiming to keep the temperature increase below 2 °C by the end of the twenty-first century, models project that in 2100 bioenergy can provide on average 42 EJ/yr (ranging from 5 to 85 EJ/yr) for transport (compared to 3.7 EJ in 2018), mainly through lignocellulosic fuels. This makes up 9–62% of final transport energy use. Only a small amount of bioenergy is projected to be used in transport through electricity and hydrogen pathways, with a larger role for biofuels in road passenger transport than in freight. The association of carbon capture and storage (CCS) with bioenergy technologies (BECCS) is a key determinant in the role of biofuels in transport, because of the competition for biomass feedstock to provide other final energy carriers along with carbon removal. Among models that consider CCS in the biofuel conversion process the average market share of biofuels is 21% in 2100 (ranging from 2 to 44%), compared to 10% (0–30%) for models that do not. Cumulative direct emissions from the transport sector account for half of the emission budget (from 306 to 776 out of 1,000 GtCO2). However, the carbon intensity of transport decreases as much as other energy sectors in 2100 when accounting for process emissions, including carbon removal from BECCS. Lignocellulosic fuels become more attractive for transport decarbonization if BECCS is not feasible for any energy sectors. Since global transport service demand increases and biomass supply is limited, its allocation to and within the transport sector is uncertain and sensitive to assumptions about political as well as technological and socioeconomic factors.
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03558507Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03558507Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03245-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03558507Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.science/hal-03558507Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03245-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu