- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | National Centre for Nucle...UKRI| National Centre for Nuclear Robotics (NCNR)Inam Ullah Khan; Nadeem Javaid; Kelum A. A. Gamage; C. James Taylor; Sobia Baig; Xiandong Ma;Today’s electricity grid is rapidly evolving, with increased penetration of renewable energy sources (RES). Conventional Optimal Power Flow (OPF) has non-linear constraints that make it a highly non-linear, non-convex optimisation problem. This complex problem escalates further with the integration of RES, which are generally intermittent in nature. In this article, an optimal power flow model combines three types of energy resources, including conventional thermal power generators, solar photovoltaic generators (SPGs) and wind power generators (WPGs). Uncertain power outputs from SPGs and WPGs are forecasted with the help of lognormal and Weibull probability distribution functions, respectively. The over and underestimation output power of RES are considered in the objective function i.e. as a reserve and penalty cost, respectively. Furthermore, to reduce carbon emissions, a carbon tax is imposed while formulating the objective function. A grey wolf optimisation technique (GWO) is employed to achieve optimisation in modified IEEE-30 and IEEE-57 bus test systems to demonstrate its feasibility. Hence, novel contributions of this work include the new objective functions and associated framework for optimising generation cost while considering RES; and, secondly, computational efficiency is improved by the use of GWO to address the non-convex OPF problem. To investigate the effectiveness of the proposed GWObased approach, it is compared in simulation to five other nature-inspired global optimisation algorithms and two well-established hybrid algorithms. For the simulation scenarios considered in this article, the GWO outperforms the other algorithms in terms of total cost minimisation and convergence time reduction.
CORE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3015473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 15download downloads 15 Powered bymore_vert CORE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3015473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Kelum A. A. Gamage; Nora Munguia; Luis Velazquez;For decades, sustainability researchers have tenaciously insisted on transforming higher education institutions into more sustainable and inclusive campuses. Yet, as the 2030 agenda seems unlikely to be achieved, universities are struggling to meet the fourth Sustainable Development Goal (SDG 4) before the 2030 deadline. In addition, the post-COVID-19 era demands quality and inclusive education that entails care for students experiencing high stress levels. So far, most of the significant achievements are within the environmental or economic dimensions of sustainable development, but strengthening the social dimension is still one pending task. The importance of happiness to sustainability initiatives on campus, and beyond, deserves further research. To this end, this article offers insights into incorporating the sustainability–happiness nexus into sustainable universities to enhance the social dimension of sustainability. COVID-19 reminds sustainability academics and stakeholders that teaching technical and scientific knowledge is necessary to become more sustainable. Still, it is not sufficient to achieve the goals in the 2030 agenda. Providing inclusive and sustainable quality education will be reached when more sustainable universities consider happiness the ultimate goal of human development.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/socsci11010024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 19download downloads 19 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/socsci11010024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammad Babar Rasheed; María D. R-Moreno; Kelum A.A. Gamage;Residential demand response is one of the key enabling technologies which plays an important role in managing the load demand of prosumers. However, the load scheduling problem becomes quite challenging due to the involvement of dynamic parameters and renewable energy resources. This work has proposed a bi-level load scheduling mechanism with dynamic electricity pricing integrated with renewable energy and storage system to overcome this problem. The first level involves the formulation of load scheduling and optimization problems as optimal stopping problems with the objective of energy consumption and delay cost minimization. This problem involved the real-time electricity pricing signal, customers load scheduling priority, machine learning (ML) based forecasted load demand, and renewable & storage unit profiles, which is solved using mathematical programming with branch-and-cut & branch-and-bound algorithms. Since the first-level optimization problem is formulated as a stopping problem, the optimal time slots are obtained using a one-step lookahead rule to schedule the load with the ability to handle the uncertainties. The second level is used to further model the load scheduling problem through the dynamic electricity pricing signal. The cost minimization objective function is then solved using the genetic algorithm (GA), where the input parameters are obtained from the first-level optimization solution. Furthermore, the impact of load prioritization in terms of time factor and electricity price is also modeled to allow the end-users to control their load. Analytical and simulation results are conducted using solar-home electricity data, Ausgrid, AUS to validate the proposed model. Results show that the proposed model can handle uncertainties involved in the load scheduling process along with a cost-effective solution in terms of cost and discomfort reduction. Furthermore, the bi-level process ensures cost minimization with end-user satisfaction regarding the dynamic electricity price signal.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.10.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.10.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:MDPI AG Funded by:FCT | LA 1FCT| LA 1Authors: Linas Gelažanskas; Kelum Gamage;doi: 10.3390/en81112336
An increased number of intermittent renewables poses a threat to the system balance. As a result, new tools and concepts, like advanced demand-side management and smart grid technologies, are required for the demand to meet supply. There is a need for higher consumer awareness and automatic response to a shortage or surplus of electricity. The distributed water heater can be considered as one of the most energy-intensive devices, where its energy demand is shiftable in time without influencing the comfort level. Tailored hot water usage predictions and advanced control techniques could enable these devices to supply ancillary energy balancing services. The paper analyses a set of hot water consumption data from residential dwellings. This work is an important foundation for the development of a demand-side management strategy based on hot water consumption forecasting at the level of individual residential houses. Various forecasting models, such as exponential smoothing, seasonal autoregressive integrated moving average, seasonal decomposition and a combination of them, are fitted to test different prediction techniques. These models outperform the chosen benchmark models (mean, naive and seasonal naive) and show better performance measure values. The results suggest that seasonal decomposition of the time series plays the most significant part in the accuracy of forecasting.
CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/145236/1/145236.pdfData sources: CORE (RIOXX-UK Aggregator)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81112336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 951 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/145236/1/145236.pdfData sources: CORE (RIOXX-UK Aggregator)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81112336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:FCT | LA 1, UKRI | National Centre for Nucle...FCT| LA 1 ,UKRI| National Centre for Nuclear Robotics (NCNR)Inam Ullah Khan; Nadeem Javeid; C. James Taylor; Kelum A. A. Gamage; Xiandong Ma;The role of electricity theft detection (ETD) is critical to maintain cost-efficiency in smart grids. However, existing methods for theft detection can struggle to handle large electricity consumption datasets because of missing values, data variance and nonlinear data relationship problems, and there is a lack of integrated infrastructure for coordinating electricity load data analysis procedures. To help address these problems, a simple yet effective ETD model is developed. Three modules are combined into the proposed model. The first module deploys a combination of data imputation, outlier handling, normalization and class balancing algorithms, to enhance the time series characteristics and generate better quality data for improved training and learning by the classifiers. Three different machine learning (ML) methods, which are uncorrelated and skillful on the problem in different ways, are employed as the base learning model. Finally, a recently developed deep learning approach, namely a temporal convolutional network (TCN), is used to ensemble the outputs of the ML algorithms for improved classification accuracy. Experimental results confirm that the proposed framework yields a highly-accurate, robust classification performance, in comparison to other well-established machine and deep learning models and thus can be a practical tool for electricity theft detection in industrial applications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3134018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 207 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3134018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Vincent N. Ogar; Sajjad Hussain; Kelum A. A. Gamage;doi: 10.3390/en16155748
Load frequency control (LFC) plays a critical role in maintaining the stability and reliability of the power system. With the increasing integration of renewable energy sources and the growth of complex interconnected grids, efficient and robust LFC strategies are in high demand. In recent years, the combination of particle swarm optimisation (PSO) and proportional-integral-derivative (PID) controllers, known as PSP-PID, has been used as a promising approach to enhance the performance of LFC systems. This article focuses on modelling, simulation, optimisation, advanced control techniques, expert knowledge, and iterative refinement of the power system to help achieve suitable PID settings that provide reliable control of the load frequency in the transmission line. The performance indices of the proposed algorithm are measured by the integral time absolute error (ITAE), which is 0.0005757 with 0.9994 Ki, 0.7741 Kp, and 0.1850 Kd. The model system dynamics are tested by varying the load frequency from 300 MW to 350 MW at a load variation of 0.2. The suggested controller algorithm is relatively reliable and accurate in power system management and protection load frequency control compared to conventional methods. This work can be improved by including more generating stations synchronised into a single network.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: M. Zulfiqar; Kelum A. A. Gamage; M. B. Rasheed; C. Gould;doi: 10.3390/en17225524
Short-term electric load forecasting is critical for power system planning and operations due to demand fluctuations driven by variable energy resources. While deep learning-based forecasting models have shown strong performance, time-sensitive applications require improvements in both accuracy and convergence speed. To address this, we propose a hybrid model that combines long short-term memory (LSTM) with a modified particle swarm optimisation (mPSO) algorithm. Although LSTM is effective for nonlinear time-series predictions, its computational complexity increases with parameter variations. To overcome this, mPSO is used for parameter tuning, ensuring accurate forecasting while avoiding local optima. Additionally, XGBoost and decision tree filtering algorithms are incorporated to reduce dimensionality and prevent overfitting. Unlike existing models that focus mainly on accuracy, our framework optimises accuracy, stability, and convergence rate simultaneously. The model was tested on real hourly load data from New South Wales and Victoria, significantly outperforming benchmark models such as ENN, LSTM, GA-LSTM, and PSO-LSTM. For NSW, the proposed model reduced MSE by 91.91%, RMSE by 94.89%, and MAPE by 74.29%. In VIC, MSE decreased by 91.33%, RMSE by 95.73%, and MAPE by 72.06%, showcasing superior performance across all metrics.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17225524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17225524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Gelazanskas, Linas; Gamage, Kelum;This paper mainly focuses on demand side management and demand response, including drivers and benefits, shiftable load scheduling methods and peak shaving techniques. Demand side management techniques found in literature are overviewed and a novel electricity demand control technique using real-time pricing is proposed. Currently users have no means to change their power consumption to benefit the whole system. The proposed method consists of modern system identification and control that would enable user side load control. This would potentially balance demand side with supply side more effectively and would also reduce peak demand and make the whole system more efficient.
Sustainable Cities a... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2013.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 497 citations 497 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Sustainable Cities a... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2013.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Zongbin Hou; Hongyu Wang; Jiyu Wang; Yunpeng Liu; Xiaobin Tang; Kelum A.A. Gamage; Zhiheng Xu;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2015 United KingdomPublisher:IEEE Funded by:FCT | LA 1FCT| LA 1Authors: Gelazanskas, Linas; Gamage, Kelum;The electricity grid is currently transforming and becoming more and more decentralised. Green energy generation has many incentives throughout the world thus small renewable generation units become popular. Intermittent generation units pose threat to system stability so new balancing techniques like Demand Side Management must be researched. Residential hot water heaters are perfect candidates to be used for shifting electricity consumption in time. This paper investigates the ability on Artificial Neural Networks to predict individual hot water heater energy demand profile. Data from about a hundred dwellings are analysed using autocorrelation technique. The most appropriate lags were chosen and different Neural Network model topologies were tested and compared. The results are positive and show that water heaters have could potentially shift electric energy.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/powereng.2015.7266352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/powereng.2015.7266352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | National Centre for Nucle...UKRI| National Centre for Nuclear Robotics (NCNR)Inam Ullah Khan; Nadeem Javaid; Kelum A. A. Gamage; C. James Taylor; Sobia Baig; Xiandong Ma;Today’s electricity grid is rapidly evolving, with increased penetration of renewable energy sources (RES). Conventional Optimal Power Flow (OPF) has non-linear constraints that make it a highly non-linear, non-convex optimisation problem. This complex problem escalates further with the integration of RES, which are generally intermittent in nature. In this article, an optimal power flow model combines three types of energy resources, including conventional thermal power generators, solar photovoltaic generators (SPGs) and wind power generators (WPGs). Uncertain power outputs from SPGs and WPGs are forecasted with the help of lognormal and Weibull probability distribution functions, respectively. The over and underestimation output power of RES are considered in the objective function i.e. as a reserve and penalty cost, respectively. Furthermore, to reduce carbon emissions, a carbon tax is imposed while formulating the objective function. A grey wolf optimisation technique (GWO) is employed to achieve optimisation in modified IEEE-30 and IEEE-57 bus test systems to demonstrate its feasibility. Hence, novel contributions of this work include the new objective functions and associated framework for optimising generation cost while considering RES; and, secondly, computational efficiency is improved by the use of GWO to address the non-convex OPF problem. To investigate the effectiveness of the proposed GWObased approach, it is compared in simulation to five other nature-inspired global optimisation algorithms and two well-established hybrid algorithms. For the simulation scenarios considered in this article, the GWO outperforms the other algorithms in terms of total cost minimisation and convergence time reduction.
CORE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3015473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 15download downloads 15 Powered bymore_vert CORE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2020.3015473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Kelum A. A. Gamage; Nora Munguia; Luis Velazquez;For decades, sustainability researchers have tenaciously insisted on transforming higher education institutions into more sustainable and inclusive campuses. Yet, as the 2030 agenda seems unlikely to be achieved, universities are struggling to meet the fourth Sustainable Development Goal (SDG 4) before the 2030 deadline. In addition, the post-COVID-19 era demands quality and inclusive education that entails care for students experiencing high stress levels. So far, most of the significant achievements are within the environmental or economic dimensions of sustainable development, but strengthening the social dimension is still one pending task. The importance of happiness to sustainability initiatives on campus, and beyond, deserves further research. To this end, this article offers insights into incorporating the sustainability–happiness nexus into sustainable universities to enhance the social dimension of sustainability. COVID-19 reminds sustainability academics and stakeholders that teaching technical and scientific knowledge is necessary to become more sustainable. Still, it is not sufficient to achieve the goals in the 2030 agenda. Providing inclusive and sustainable quality education will be reached when more sustainable universities consider happiness the ultimate goal of human development.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/socsci11010024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 19download downloads 19 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/socsci11010024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammad Babar Rasheed; María D. R-Moreno; Kelum A.A. Gamage;Residential demand response is one of the key enabling technologies which plays an important role in managing the load demand of prosumers. However, the load scheduling problem becomes quite challenging due to the involvement of dynamic parameters and renewable energy resources. This work has proposed a bi-level load scheduling mechanism with dynamic electricity pricing integrated with renewable energy and storage system to overcome this problem. The first level involves the formulation of load scheduling and optimization problems as optimal stopping problems with the objective of energy consumption and delay cost minimization. This problem involved the real-time electricity pricing signal, customers load scheduling priority, machine learning (ML) based forecasted load demand, and renewable & storage unit profiles, which is solved using mathematical programming with branch-and-cut & branch-and-bound algorithms. Since the first-level optimization problem is formulated as a stopping problem, the optimal time slots are obtained using a one-step lookahead rule to schedule the load with the ability to handle the uncertainties. The second level is used to further model the load scheduling problem through the dynamic electricity pricing signal. The cost minimization objective function is then solved using the genetic algorithm (GA), where the input parameters are obtained from the first-level optimization solution. Furthermore, the impact of load prioritization in terms of time factor and electricity price is also modeled to allow the end-users to control their load. Analytical and simulation results are conducted using solar-home electricity data, Ausgrid, AUS to validate the proposed model. Results show that the proposed model can handle uncertainties involved in the load scheduling process along with a cost-effective solution in terms of cost and discomfort reduction. Furthermore, the bi-level process ensures cost minimization with end-user satisfaction regarding the dynamic electricity price signal.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.10.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.10.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:MDPI AG Funded by:FCT | LA 1FCT| LA 1Authors: Linas Gelažanskas; Kelum Gamage;doi: 10.3390/en81112336
An increased number of intermittent renewables poses a threat to the system balance. As a result, new tools and concepts, like advanced demand-side management and smart grid technologies, are required for the demand to meet supply. There is a need for higher consumer awareness and automatic response to a shortage or surplus of electricity. The distributed water heater can be considered as one of the most energy-intensive devices, where its energy demand is shiftable in time without influencing the comfort level. Tailored hot water usage predictions and advanced control techniques could enable these devices to supply ancillary energy balancing services. The paper analyses a set of hot water consumption data from residential dwellings. This work is an important foundation for the development of a demand-side management strategy based on hot water consumption forecasting at the level of individual residential houses. Various forecasting models, such as exponential smoothing, seasonal autoregressive integrated moving average, seasonal decomposition and a combination of them, are fitted to test different prediction techniques. These models outperform the chosen benchmark models (mean, naive and seasonal naive) and show better performance measure values. The results suggest that seasonal decomposition of the time series plays the most significant part in the accuracy of forecasting.
CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/145236/1/145236.pdfData sources: CORE (RIOXX-UK Aggregator)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81112336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 951 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2015License: CC BYFull-Text: http://eprints.gla.ac.uk/145236/1/145236.pdfData sources: CORE (RIOXX-UK Aggregator)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81112336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:FCT | LA 1, UKRI | National Centre for Nucle...FCT| LA 1 ,UKRI| National Centre for Nuclear Robotics (NCNR)Inam Ullah Khan; Nadeem Javeid; C. James Taylor; Kelum A. A. Gamage; Xiandong Ma;The role of electricity theft detection (ETD) is critical to maintain cost-efficiency in smart grids. However, existing methods for theft detection can struggle to handle large electricity consumption datasets because of missing values, data variance and nonlinear data relationship problems, and there is a lack of integrated infrastructure for coordinating electricity load data analysis procedures. To help address these problems, a simple yet effective ETD model is developed. Three modules are combined into the proposed model. The first module deploys a combination of data imputation, outlier handling, normalization and class balancing algorithms, to enhance the time series characteristics and generate better quality data for improved training and learning by the classifiers. Three different machine learning (ML) methods, which are uncorrelated and skillful on the problem in different ways, are employed as the base learning model. Finally, a recently developed deep learning approach, namely a temporal convolutional network (TCN), is used to ensemble the outputs of the ML algorithms for improved classification accuracy. Experimental results confirm that the proposed framework yields a highly-accurate, robust classification performance, in comparison to other well-established machine and deep learning models and thus can be a practical tool for electricity theft detection in industrial applications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3134018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 207 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3134018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Vincent N. Ogar; Sajjad Hussain; Kelum A. A. Gamage;doi: 10.3390/en16155748
Load frequency control (LFC) plays a critical role in maintaining the stability and reliability of the power system. With the increasing integration of renewable energy sources and the growth of complex interconnected grids, efficient and robust LFC strategies are in high demand. In recent years, the combination of particle swarm optimisation (PSO) and proportional-integral-derivative (PID) controllers, known as PSP-PID, has been used as a promising approach to enhance the performance of LFC systems. This article focuses on modelling, simulation, optimisation, advanced control techniques, expert knowledge, and iterative refinement of the power system to help achieve suitable PID settings that provide reliable control of the load frequency in the transmission line. The performance indices of the proposed algorithm are measured by the integral time absolute error (ITAE), which is 0.0005757 with 0.9994 Ki, 0.7741 Kp, and 0.1850 Kd. The model system dynamics are tested by varying the load frequency from 300 MW to 350 MW at a load variation of 0.2. The suggested controller algorithm is relatively reliable and accurate in power system management and protection load frequency control compared to conventional methods. This work can be improved by including more generating stations synchronised into a single network.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16155748&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: M. Zulfiqar; Kelum A. A. Gamage; M. B. Rasheed; C. Gould;doi: 10.3390/en17225524
Short-term electric load forecasting is critical for power system planning and operations due to demand fluctuations driven by variable energy resources. While deep learning-based forecasting models have shown strong performance, time-sensitive applications require improvements in both accuracy and convergence speed. To address this, we propose a hybrid model that combines long short-term memory (LSTM) with a modified particle swarm optimisation (mPSO) algorithm. Although LSTM is effective for nonlinear time-series predictions, its computational complexity increases with parameter variations. To overcome this, mPSO is used for parameter tuning, ensuring accurate forecasting while avoiding local optima. Additionally, XGBoost and decision tree filtering algorithms are incorporated to reduce dimensionality and prevent overfitting. Unlike existing models that focus mainly on accuracy, our framework optimises accuracy, stability, and convergence rate simultaneously. The model was tested on real hourly load data from New South Wales and Victoria, significantly outperforming benchmark models such as ENN, LSTM, GA-LSTM, and PSO-LSTM. For NSW, the proposed model reduced MSE by 91.91%, RMSE by 94.89%, and MAPE by 74.29%. In VIC, MSE decreased by 91.33%, RMSE by 95.73%, and MAPE by 72.06%, showcasing superior performance across all metrics.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17225524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17225524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Gelazanskas, Linas; Gamage, Kelum;This paper mainly focuses on demand side management and demand response, including drivers and benefits, shiftable load scheduling methods and peak shaving techniques. Demand side management techniques found in literature are overviewed and a novel electricity demand control technique using real-time pricing is proposed. Currently users have no means to change their power consumption to benefit the whole system. The proposed method consists of modern system identification and control that would enable user side load control. This would potentially balance demand side with supply side more effectively and would also reduce peak demand and make the whole system more efficient.
Sustainable Cities a... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2013.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 497 citations 497 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Sustainable Cities a... arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2013.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Zongbin Hou; Hongyu Wang; Jiyu Wang; Yunpeng Liu; Xiaobin Tang; Kelum A.A. Gamage; Zhiheng Xu;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2015 United KingdomPublisher:IEEE Funded by:FCT | LA 1FCT| LA 1Authors: Gelazanskas, Linas; Gamage, Kelum;The electricity grid is currently transforming and becoming more and more decentralised. Green energy generation has many incentives throughout the world thus small renewable generation units become popular. Intermittent generation units pose threat to system stability so new balancing techniques like Demand Side Management must be researched. Residential hot water heaters are perfect candidates to be used for shifting electricity consumption in time. This paper investigates the ability on Artificial Neural Networks to predict individual hot water heater energy demand profile. Data from about a hundred dwellings are analysed using autocorrelation technique. The most appropriate lags were chosen and different Neural Network model topologies were tested and compared. The results are positive and show that water heaters have could potentially shift electric energy.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/powereng.2015.7266352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/powereng.2015.7266352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu