- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2022 GermanyPublisher:Elsevier BV Funded by:DFG | Multi-functional conversi..., DFGDFG| Multi-functional conversion of chemical species and energy ,DFGDennis Kaczmarek; Tina Kasper; Nina Gaiser; Patrick Oßwald; Steffen Schmitt; Thomas Bierkandt; Hao Zhang; Hao Zhang; Katharina Kohse-Höinghaus; Charlotte Rudolph; Burak Atakan;Abstract The potential of dimethyl ether (DME) and dimethoxymethane (DMM), representatives of the attractive oxymethylene ether (OME) alternative fuel family, are explored here as reactivity enhancers for methane-fueled polygeneration processes. Typically, such processes that can flexibly generate power, heat, or chemicals, operate under fuel-rich conditions in gas turbines or internal combustion engines. To provide a consistent basis for the underlying reaction mechanisms, it is recognized that speciation data for the DME/CH4 fuel combination are available for such conditions while such information for the DMM/CH4 system is largely lacking. In addition, it should be noted that a detailed speciation study in flames, i.e., combustion systems involving chemistry and transport processes over a large temperature range, is still missing in spite of the potential of such systems to provide extended species information. In a systematic approach using speciation with electron ionization molecular-beam mass spectrometry (EI-MBMS), we thus report, as a first step, investigation of six fuel-rich premixed flames of DME and DMM and their blends with methane with special attention on interesting chemicals. Secondly, a comprehensive but compact DME/DMM/CH4 model (PolyMech2.1) is developed based on these data. This model is then examined against available experimental data under conditions from various facilities, focusing preferentially on elevated pressure and fuel-rich conditions. Comparison with existing literature models is also included in this evaluation. Thirdly, an analysis is given on this basis, via the extensively tested PolyMech2.1 model, for assumed polygeneration conditions in a homogeneous charge compression ignition (HCCI) engine environment. The main interest of this model-assisted exploration is to evaluate whether addition of DME or DMM in a polygeneration process can lead to potentially useful conditions for the production of syngas or other chemicals, along with work and heat. The flame results show that high syngas yields, i.e., up to ∼78% for CO and ∼35% for H2, can be obtained in their burnt gases. From the large number of intermediates detected, predominantly acetylene, ethylene, ethane, and formaldehyde show yields of 2.1−4.4% (C2 hydrocarbons) and 3.4−8.7% (CH2O), respectively. Also, methanol and methyl formate show comparably high yields of up to 0.6−6.7% in the flames with DMM, which is 1–2 orders of magnitude higher than in those with DME as the additive. In the modeling-assisted exploration of the engine process, the PolyMech2.1 model is seen to perform at significantly reduced computational costs compared to a recently validated model without sacrificing the prediction performance. Promising conditions for the assumed polygeneration process using fuel combinations in the DME/DMM/CH4 system are identified with attractive syngas yields of up to 77% together with work and heat output at exergetic efficiencies of up to 89% with DME.
DLR publication serv... arrow_drop_down Publications at Bielefeld UniversityArticle . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2021.111863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DLR publication serv... arrow_drop_down Publications at Bielefeld UniversityArticle . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2021.111863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2022 GermanyPublisher:Elsevier BV Funded by:DFG | Multi-functional conversi..., DFGDFG| Multi-functional conversion of chemical species and energy ,DFGDennis Kaczmarek; Tina Kasper; Nina Gaiser; Patrick Oßwald; Steffen Schmitt; Thomas Bierkandt; Hao Zhang; Hao Zhang; Katharina Kohse-Höinghaus; Charlotte Rudolph; Burak Atakan;Abstract The potential of dimethyl ether (DME) and dimethoxymethane (DMM), representatives of the attractive oxymethylene ether (OME) alternative fuel family, are explored here as reactivity enhancers for methane-fueled polygeneration processes. Typically, such processes that can flexibly generate power, heat, or chemicals, operate under fuel-rich conditions in gas turbines or internal combustion engines. To provide a consistent basis for the underlying reaction mechanisms, it is recognized that speciation data for the DME/CH4 fuel combination are available for such conditions while such information for the DMM/CH4 system is largely lacking. In addition, it should be noted that a detailed speciation study in flames, i.e., combustion systems involving chemistry and transport processes over a large temperature range, is still missing in spite of the potential of such systems to provide extended species information. In a systematic approach using speciation with electron ionization molecular-beam mass spectrometry (EI-MBMS), we thus report, as a first step, investigation of six fuel-rich premixed flames of DME and DMM and their blends with methane with special attention on interesting chemicals. Secondly, a comprehensive but compact DME/DMM/CH4 model (PolyMech2.1) is developed based on these data. This model is then examined against available experimental data under conditions from various facilities, focusing preferentially on elevated pressure and fuel-rich conditions. Comparison with existing literature models is also included in this evaluation. Thirdly, an analysis is given on this basis, via the extensively tested PolyMech2.1 model, for assumed polygeneration conditions in a homogeneous charge compression ignition (HCCI) engine environment. The main interest of this model-assisted exploration is to evaluate whether addition of DME or DMM in a polygeneration process can lead to potentially useful conditions for the production of syngas or other chemicals, along with work and heat. The flame results show that high syngas yields, i.e., up to ∼78% for CO and ∼35% for H2, can be obtained in their burnt gases. From the large number of intermediates detected, predominantly acetylene, ethylene, ethane, and formaldehyde show yields of 2.1−4.4% (C2 hydrocarbons) and 3.4−8.7% (CH2O), respectively. Also, methanol and methyl formate show comparably high yields of up to 0.6−6.7% in the flames with DMM, which is 1–2 orders of magnitude higher than in those with DME as the additive. In the modeling-assisted exploration of the engine process, the PolyMech2.1 model is seen to perform at significantly reduced computational costs compared to a recently validated model without sacrificing the prediction performance. Promising conditions for the assumed polygeneration process using fuel combinations in the DME/DMM/CH4 system are identified with attractive syngas yields of up to 77% together with work and heat output at exergetic efficiencies of up to 89% with DME.
DLR publication serv... arrow_drop_down Publications at Bielefeld UniversityArticle . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2021.111863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DLR publication serv... arrow_drop_down Publications at Bielefeld UniversityArticle . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2021.111863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Elsevier BV Authors: Katharina Kohse-Höinghaus;Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Elsevier BV Authors: Katharina Kohse-Höinghaus;Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, GermanyPublisher:Elsevier BV Funded by:DFGDFGMatteo Pelucchi; Steffen Schmitt; Nina Gaiser; Alberto Cuoci; Alessio Frassoldati; Hao Zhang; Alessandro Stagni; Patrick Oßwald; Katharina Kohse-Höinghaus; Tiziano Faravelli;handle: 11311/1235607
Dimethyl ether (DME) is a widely recognized alternative fuel which can be sustainably produced from different feedstock. Its oxidation mechanism belongs to the most deeply understood within oxygenated fuels. The oxidation of DME in the presence of NO has gained renewed attention in recent experimental and modeling effort s because of a rather complex behavior in accelerating or inhibiting DME consumption, depending on the respective temperature and mixture conditions, similarly to what has been already observed for n- and iso- alkanes. The present investigation focuses on the interaction chemistry of DME-O 2 -NO mixtures in the low- to intermediate-temperature regime. Previously reported flow reactor data from mass spectrometric analysis with and without NO addition are extended by isomer-resolved detection of some key intermediates, including species of formula {HNO 2 } and {CH 3 NO 2 } by using doubleimaging photoelectron photoion coincidence (i 2 PEPICO) spectroscopy. Specifically trans- HONO is highlighted as the most abundant isomer. Starting from the recently published CRECK mechanism for DME oxidation and other models available in the literature, the relevant kinetics of DME/NO x interactions are included and analyzed. The model thus obtained is compared with new experimental data from this study and others from the literature and is used to interpret observed discrepancies. A systematic polynomial chaos expansion (PCE) analysis is also performed to assess the joint uncertainty of key influential reactions under the present conditions. Nevertheless, remaining differences of model and experiment can only be addressed jointly, demonstrating the value of a concurrent experimental-modeling approach. (c) 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
RE.PUBLIC@POLIMI Res... arrow_drop_down Publications at Bielefeld UniversityArticle . 2023License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2022.112464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Publications at Bielefeld UniversityArticle . 2023License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2022.112464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, GermanyPublisher:Elsevier BV Funded by:DFGDFGMatteo Pelucchi; Steffen Schmitt; Nina Gaiser; Alberto Cuoci; Alessio Frassoldati; Hao Zhang; Alessandro Stagni; Patrick Oßwald; Katharina Kohse-Höinghaus; Tiziano Faravelli;handle: 11311/1235607
Dimethyl ether (DME) is a widely recognized alternative fuel which can be sustainably produced from different feedstock. Its oxidation mechanism belongs to the most deeply understood within oxygenated fuels. The oxidation of DME in the presence of NO has gained renewed attention in recent experimental and modeling effort s because of a rather complex behavior in accelerating or inhibiting DME consumption, depending on the respective temperature and mixture conditions, similarly to what has been already observed for n- and iso- alkanes. The present investigation focuses on the interaction chemistry of DME-O 2 -NO mixtures in the low- to intermediate-temperature regime. Previously reported flow reactor data from mass spectrometric analysis with and without NO addition are extended by isomer-resolved detection of some key intermediates, including species of formula {HNO 2 } and {CH 3 NO 2 } by using doubleimaging photoelectron photoion coincidence (i 2 PEPICO) spectroscopy. Specifically trans- HONO is highlighted as the most abundant isomer. Starting from the recently published CRECK mechanism for DME oxidation and other models available in the literature, the relevant kinetics of DME/NO x interactions are included and analyzed. The model thus obtained is compared with new experimental data from this study and others from the literature and is used to interpret observed discrepancies. A systematic polynomial chaos expansion (PCE) analysis is also performed to assess the joint uncertainty of key influential reactions under the present conditions. Nevertheless, remaining differences of model and experiment can only be addressed jointly, demonstrating the value of a concurrent experimental-modeling approach. (c) 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
RE.PUBLIC@POLIMI Res... arrow_drop_down Publications at Bielefeld UniversityArticle . 2023License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2022.112464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Publications at Bielefeld UniversityArticle . 2023License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2022.112464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Elsevier BV Funded by:DFGDFGWenhao Yuan; Lena Ruwe; Sabrina Schwarz; Chuangchuang Cao; Jiuzhong Yang; Olaf Deutschmann; Katharina Kohse-Höinghaus; Fei Qi;Abstract This work aims to provide insight into the interaction of propene with NOx from both experimental and kinetic modeling perspectives. The oxidation of propene at fuel-lean (ϕ=0.23) condition and the oxidation of propene doped with NOx at fuel-lean (ϕ=0.23) and fuel-rich (ϕ=1.35) conditions have been investigated in a laminar flow reactor at atmospheric pressure in the temperature range of 725-1250 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used to achieve comprehensive, isomer-resolved identification of major products and critical nitrogenous, carbonyl and hydrocarbon intermediates. To complement the experiments, a detailed kinetic model, starting from widely used core mechanisms, was developed. Rate of production analyses and sensitivity analyses were performed to interpret the experimental observations. The results show that the promoting effects of NOx on the oxidation reactivity of propene are initiated by the reactions of allyl radical with NO2 at low temperature, i.e. C3H5 A+NO2 C3H5O+NO. For the oxidation of the fuel-rich propene/NOx mixture, temperature-dependent mole fraction profiles of propene, O2 and products show several distinct regions reflecting a competition between chain propagation via C3H5 A+NO2 C3H5O+NO and chain termination via C3H5 A+NO C3H5NO. The formation and consumption chemistry of carbonyl and hydrocarbon intermediates in the presence of NOx was also analyzed and discussed.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.07.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.07.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Elsevier BV Funded by:DFGDFGWenhao Yuan; Lena Ruwe; Sabrina Schwarz; Chuangchuang Cao; Jiuzhong Yang; Olaf Deutschmann; Katharina Kohse-Höinghaus; Fei Qi;Abstract This work aims to provide insight into the interaction of propene with NOx from both experimental and kinetic modeling perspectives. The oxidation of propene at fuel-lean (ϕ=0.23) condition and the oxidation of propene doped with NOx at fuel-lean (ϕ=0.23) and fuel-rich (ϕ=1.35) conditions have been investigated in a laminar flow reactor at atmospheric pressure in the temperature range of 725-1250 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used to achieve comprehensive, isomer-resolved identification of major products and critical nitrogenous, carbonyl and hydrocarbon intermediates. To complement the experiments, a detailed kinetic model, starting from widely used core mechanisms, was developed. Rate of production analyses and sensitivity analyses were performed to interpret the experimental observations. The results show that the promoting effects of NOx on the oxidation reactivity of propene are initiated by the reactions of allyl radical with NO2 at low temperature, i.e. C3H5 A+NO2 C3H5O+NO. For the oxidation of the fuel-rich propene/NOx mixture, temperature-dependent mole fraction profiles of propene, O2 and products show several distinct regions reflecting a competition between chain propagation via C3H5 A+NO2 C3H5O+NO and chain termination via C3H5 A+NO C3H5NO. The formation and consumption chemistry of carbonyl and hydrocarbon intermediates in the presence of NOx was also analyzed and discussed.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.07.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.07.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2022 GermanyPublisher:Elsevier BV Funded by:DFG | Multi-functional conversi..., DFGDFG| Multi-functional conversion of chemical species and energy ,DFGDennis Kaczmarek; Tina Kasper; Nina Gaiser; Patrick Oßwald; Steffen Schmitt; Thomas Bierkandt; Hao Zhang; Hao Zhang; Katharina Kohse-Höinghaus; Charlotte Rudolph; Burak Atakan;Abstract The potential of dimethyl ether (DME) and dimethoxymethane (DMM), representatives of the attractive oxymethylene ether (OME) alternative fuel family, are explored here as reactivity enhancers for methane-fueled polygeneration processes. Typically, such processes that can flexibly generate power, heat, or chemicals, operate under fuel-rich conditions in gas turbines or internal combustion engines. To provide a consistent basis for the underlying reaction mechanisms, it is recognized that speciation data for the DME/CH4 fuel combination are available for such conditions while such information for the DMM/CH4 system is largely lacking. In addition, it should be noted that a detailed speciation study in flames, i.e., combustion systems involving chemistry and transport processes over a large temperature range, is still missing in spite of the potential of such systems to provide extended species information. In a systematic approach using speciation with electron ionization molecular-beam mass spectrometry (EI-MBMS), we thus report, as a first step, investigation of six fuel-rich premixed flames of DME and DMM and their blends with methane with special attention on interesting chemicals. Secondly, a comprehensive but compact DME/DMM/CH4 model (PolyMech2.1) is developed based on these data. This model is then examined against available experimental data under conditions from various facilities, focusing preferentially on elevated pressure and fuel-rich conditions. Comparison with existing literature models is also included in this evaluation. Thirdly, an analysis is given on this basis, via the extensively tested PolyMech2.1 model, for assumed polygeneration conditions in a homogeneous charge compression ignition (HCCI) engine environment. The main interest of this model-assisted exploration is to evaluate whether addition of DME or DMM in a polygeneration process can lead to potentially useful conditions for the production of syngas or other chemicals, along with work and heat. The flame results show that high syngas yields, i.e., up to ∼78% for CO and ∼35% for H2, can be obtained in their burnt gases. From the large number of intermediates detected, predominantly acetylene, ethylene, ethane, and formaldehyde show yields of 2.1−4.4% (C2 hydrocarbons) and 3.4−8.7% (CH2O), respectively. Also, methanol and methyl formate show comparably high yields of up to 0.6−6.7% in the flames with DMM, which is 1–2 orders of magnitude higher than in those with DME as the additive. In the modeling-assisted exploration of the engine process, the PolyMech2.1 model is seen to perform at significantly reduced computational costs compared to a recently validated model without sacrificing the prediction performance. Promising conditions for the assumed polygeneration process using fuel combinations in the DME/DMM/CH4 system are identified with attractive syngas yields of up to 77% together with work and heat output at exergetic efficiencies of up to 89% with DME.
DLR publication serv... arrow_drop_down Publications at Bielefeld UniversityArticle . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2021.111863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DLR publication serv... arrow_drop_down Publications at Bielefeld UniversityArticle . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2021.111863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2022 GermanyPublisher:Elsevier BV Funded by:DFG | Multi-functional conversi..., DFGDFG| Multi-functional conversion of chemical species and energy ,DFGDennis Kaczmarek; Tina Kasper; Nina Gaiser; Patrick Oßwald; Steffen Schmitt; Thomas Bierkandt; Hao Zhang; Hao Zhang; Katharina Kohse-Höinghaus; Charlotte Rudolph; Burak Atakan;Abstract The potential of dimethyl ether (DME) and dimethoxymethane (DMM), representatives of the attractive oxymethylene ether (OME) alternative fuel family, are explored here as reactivity enhancers for methane-fueled polygeneration processes. Typically, such processes that can flexibly generate power, heat, or chemicals, operate under fuel-rich conditions in gas turbines or internal combustion engines. To provide a consistent basis for the underlying reaction mechanisms, it is recognized that speciation data for the DME/CH4 fuel combination are available for such conditions while such information for the DMM/CH4 system is largely lacking. In addition, it should be noted that a detailed speciation study in flames, i.e., combustion systems involving chemistry and transport processes over a large temperature range, is still missing in spite of the potential of such systems to provide extended species information. In a systematic approach using speciation with electron ionization molecular-beam mass spectrometry (EI-MBMS), we thus report, as a first step, investigation of six fuel-rich premixed flames of DME and DMM and their blends with methane with special attention on interesting chemicals. Secondly, a comprehensive but compact DME/DMM/CH4 model (PolyMech2.1) is developed based on these data. This model is then examined against available experimental data under conditions from various facilities, focusing preferentially on elevated pressure and fuel-rich conditions. Comparison with existing literature models is also included in this evaluation. Thirdly, an analysis is given on this basis, via the extensively tested PolyMech2.1 model, for assumed polygeneration conditions in a homogeneous charge compression ignition (HCCI) engine environment. The main interest of this model-assisted exploration is to evaluate whether addition of DME or DMM in a polygeneration process can lead to potentially useful conditions for the production of syngas or other chemicals, along with work and heat. The flame results show that high syngas yields, i.e., up to ∼78% for CO and ∼35% for H2, can be obtained in their burnt gases. From the large number of intermediates detected, predominantly acetylene, ethylene, ethane, and formaldehyde show yields of 2.1−4.4% (C2 hydrocarbons) and 3.4−8.7% (CH2O), respectively. Also, methanol and methyl formate show comparably high yields of up to 0.6−6.7% in the flames with DMM, which is 1–2 orders of magnitude higher than in those with DME as the additive. In the modeling-assisted exploration of the engine process, the PolyMech2.1 model is seen to perform at significantly reduced computational costs compared to a recently validated model without sacrificing the prediction performance. Promising conditions for the assumed polygeneration process using fuel combinations in the DME/DMM/CH4 system are identified with attractive syngas yields of up to 77% together with work and heat output at exergetic efficiencies of up to 89% with DME.
DLR publication serv... arrow_drop_down Publications at Bielefeld UniversityArticle . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2021.111863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DLR publication serv... arrow_drop_down Publications at Bielefeld UniversityArticle . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2022License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2022Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2021.111863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Elsevier BV Authors: Katharina Kohse-Höinghaus;Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Elsevier BV Authors: Katharina Kohse-Höinghaus;Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2020License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.06.375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, GermanyPublisher:Elsevier BV Funded by:DFGDFGMatteo Pelucchi; Steffen Schmitt; Nina Gaiser; Alberto Cuoci; Alessio Frassoldati; Hao Zhang; Alessandro Stagni; Patrick Oßwald; Katharina Kohse-Höinghaus; Tiziano Faravelli;handle: 11311/1235607
Dimethyl ether (DME) is a widely recognized alternative fuel which can be sustainably produced from different feedstock. Its oxidation mechanism belongs to the most deeply understood within oxygenated fuels. The oxidation of DME in the presence of NO has gained renewed attention in recent experimental and modeling effort s because of a rather complex behavior in accelerating or inhibiting DME consumption, depending on the respective temperature and mixture conditions, similarly to what has been already observed for n- and iso- alkanes. The present investigation focuses on the interaction chemistry of DME-O 2 -NO mixtures in the low- to intermediate-temperature regime. Previously reported flow reactor data from mass spectrometric analysis with and without NO addition are extended by isomer-resolved detection of some key intermediates, including species of formula {HNO 2 } and {CH 3 NO 2 } by using doubleimaging photoelectron photoion coincidence (i 2 PEPICO) spectroscopy. Specifically trans- HONO is highlighted as the most abundant isomer. Starting from the recently published CRECK mechanism for DME oxidation and other models available in the literature, the relevant kinetics of DME/NO x interactions are included and analyzed. The model thus obtained is compared with new experimental data from this study and others from the literature and is used to interpret observed discrepancies. A systematic polynomial chaos expansion (PCE) analysis is also performed to assess the joint uncertainty of key influential reactions under the present conditions. Nevertheless, remaining differences of model and experiment can only be addressed jointly, demonstrating the value of a concurrent experimental-modeling approach. (c) 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
RE.PUBLIC@POLIMI Res... arrow_drop_down Publications at Bielefeld UniversityArticle . 2023License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2022.112464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Publications at Bielefeld UniversityArticle . 2023License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2022.112464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, GermanyPublisher:Elsevier BV Funded by:DFGDFGMatteo Pelucchi; Steffen Schmitt; Nina Gaiser; Alberto Cuoci; Alessio Frassoldati; Hao Zhang; Alessandro Stagni; Patrick Oßwald; Katharina Kohse-Höinghaus; Tiziano Faravelli;handle: 11311/1235607
Dimethyl ether (DME) is a widely recognized alternative fuel which can be sustainably produced from different feedstock. Its oxidation mechanism belongs to the most deeply understood within oxygenated fuels. The oxidation of DME in the presence of NO has gained renewed attention in recent experimental and modeling effort s because of a rather complex behavior in accelerating or inhibiting DME consumption, depending on the respective temperature and mixture conditions, similarly to what has been already observed for n- and iso- alkanes. The present investigation focuses on the interaction chemistry of DME-O 2 -NO mixtures in the low- to intermediate-temperature regime. Previously reported flow reactor data from mass spectrometric analysis with and without NO addition are extended by isomer-resolved detection of some key intermediates, including species of formula {HNO 2 } and {CH 3 NO 2 } by using doubleimaging photoelectron photoion coincidence (i 2 PEPICO) spectroscopy. Specifically trans- HONO is highlighted as the most abundant isomer. Starting from the recently published CRECK mechanism for DME oxidation and other models available in the literature, the relevant kinetics of DME/NO x interactions are included and analyzed. The model thus obtained is compared with new experimental data from this study and others from the literature and is used to interpret observed discrepancies. A systematic polynomial chaos expansion (PCE) analysis is also performed to assess the joint uncertainty of key influential reactions under the present conditions. Nevertheless, remaining differences of model and experiment can only be addressed jointly, demonstrating the value of a concurrent experimental-modeling approach. (c) 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
RE.PUBLIC@POLIMI Res... arrow_drop_down Publications at Bielefeld UniversityArticle . 2023License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2022.112464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Publications at Bielefeld UniversityArticle . 2023License: "In Copyright" Rights StatementData sources: Publications at Bielefeld Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2022.112464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Elsevier BV Funded by:DFGDFGWenhao Yuan; Lena Ruwe; Sabrina Schwarz; Chuangchuang Cao; Jiuzhong Yang; Olaf Deutschmann; Katharina Kohse-Höinghaus; Fei Qi;Abstract This work aims to provide insight into the interaction of propene with NOx from both experimental and kinetic modeling perspectives. The oxidation of propene at fuel-lean (ϕ=0.23) condition and the oxidation of propene doped with NOx at fuel-lean (ϕ=0.23) and fuel-rich (ϕ=1.35) conditions have been investigated in a laminar flow reactor at atmospheric pressure in the temperature range of 725-1250 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used to achieve comprehensive, isomer-resolved identification of major products and critical nitrogenous, carbonyl and hydrocarbon intermediates. To complement the experiments, a detailed kinetic model, starting from widely used core mechanisms, was developed. Rate of production analyses and sensitivity analyses were performed to interpret the experimental observations. The results show that the promoting effects of NOx on the oxidation reactivity of propene are initiated by the reactions of allyl radical with NO2 at low temperature, i.e. C3H5 A+NO2 C3H5O+NO. For the oxidation of the fuel-rich propene/NOx mixture, temperature-dependent mole fraction profiles of propene, O2 and products show several distinct regions reflecting a competition between chain propagation via C3H5 A+NO2 C3H5O+NO and chain termination via C3H5 A+NO C3H5NO. The formation and consumption chemistry of carbonyl and hydrocarbon intermediates in the presence of NOx was also analyzed and discussed.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.07.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.07.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Elsevier BV Funded by:DFGDFGWenhao Yuan; Lena Ruwe; Sabrina Schwarz; Chuangchuang Cao; Jiuzhong Yang; Olaf Deutschmann; Katharina Kohse-Höinghaus; Fei Qi;Abstract This work aims to provide insight into the interaction of propene with NOx from both experimental and kinetic modeling perspectives. The oxidation of propene at fuel-lean (ϕ=0.23) condition and the oxidation of propene doped with NOx at fuel-lean (ϕ=0.23) and fuel-rich (ϕ=1.35) conditions have been investigated in a laminar flow reactor at atmospheric pressure in the temperature range of 725-1250 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used to achieve comprehensive, isomer-resolved identification of major products and critical nitrogenous, carbonyl and hydrocarbon intermediates. To complement the experiments, a detailed kinetic model, starting from widely used core mechanisms, was developed. Rate of production analyses and sensitivity analyses were performed to interpret the experimental observations. The results show that the promoting effects of NOx on the oxidation reactivity of propene are initiated by the reactions of allyl radical with NO2 at low temperature, i.e. C3H5 A+NO2 C3H5O+NO. For the oxidation of the fuel-rich propene/NOx mixture, temperature-dependent mole fraction profiles of propene, O2 and products show several distinct regions reflecting a competition between chain propagation via C3H5 A+NO2 C3H5O+NO and chain termination via C3H5 A+NO C3H5NO. The formation and consumption chemistry of carbonyl and hydrocarbon intermediates in the presence of NOx was also analyzed and discussed.
Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.07.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the C... arrow_drop_down Proceedings of the Combustion InstituteArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublications at Bielefeld UniversityArticle . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityPublications at Bielefeld UniversityOther literature type . 2021License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proci.2020.07.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu