- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 New Zealand, Australia, AustraliaPublisher:Wiley Rigosi, A.; Hanson, P.; Hamilton, D.; Hipsey, M.; Rusak, J.; Bois, J.; Sparber, K.; Chorus, I.; Watkinson, A.; Qin, B.; Kim, B.; Brookes, J.;A Bayesian network model was developed to assess the combined influence of nutrient conditions and climate on the occurrence of cyanobacterial blooms within lakes of diverse hydrology and nutrient supply. Physicochemical, biological, and meteorological observations were collated from 20 lakes located at different latitudes and characterized by a range of sizes and trophic states. Using these data, we built a Bayesian network to (1) analyze the sensitivity of cyanobacterial bloom development to different environmental factors and (2) determine the probability that cyanobacterial blooms would occur. Blooms were classified in three categories of hazard (low, moderate, and high) based on cell abundances. The most important factors determining cyanobacterial bloom occurrence were water temperature, nutrient availability, and the ratio of mixing depth to euphotic depth. The probability of cyanobacterial blooms was evaluated under different combinations of total phosphorus and water temperature. The Bayesian network was then applied to quantify the probability of blooms under a future climate warming scenario. The probability of the “high hazardous” category of cyanobacterial blooms increased 5% in response to either an increase in water temperature of 0.8°C (initial water temperature above 24°C) or an increase in total phosphorus from 0.01 mg/L to 0.02 mg/L. Mesotrophic lakes were particularly vulnerable to warming. Reducing nutrient concentrations counteracts the increased cyanobacterial risk associated with higher temperatures.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 United Kingdom, Switzerland, Czech Republic, France, Estonia, Italy, Germany, Czech Republic, ItalyPublisher:Wiley Publicly fundedFunded by:EC | IntEL, UKRI | Global Observatory of Lak..., NSF | SCC-IRG Track 2: Resilien... +3 projectsEC| IntEL ,UKRI| Global Observatory of Lake Responses to Environmental Change (GloboLakes) ,NSF| SCC-IRG Track 2: Resilient Water Systems: Integrating Environmental Sensor Networks and Real-Time Forecasting to Adaptively Manage Drinking Water Quality and Build Social Trust ,NSF| CNH-L: Linking Land-Use Decision Making, Water Quality, and Lake Associations to Understand Human-Natural Feedbacks in Lake Catchments ,NSF| Collaborative Research: Consequences of changing oxygen availability for carbon cycling in freshwater ecosystems ,NSF| MSB-ECA: A macrosystems science training program: developing undergraduates' simulation modeling, distributed computing, and collaborative skillsCayelan C. Carey; Karsten Rinke; R. Iestyn Woolway; Wim Thiery; Wim Thiery; Jonathan P. Doubek; Nico Salmaso; Ruchi Bhattacharya; Rita Adrian; Rita Adrian; Marieke A. Frassl; Orlane Anneville; James A. Rusak; James A. Rusak; Josef Hejzlar; Jason D. Stockwell; Lars G. Rudstam; Mikkel René Andersen; Stephen J. Thackeray; Aleksandra M. Lewandowska; Christian Torsten Seltmann; Christian Torsten Seltmann; Dietmar Straile; Emily R. Nodine; Nasime Janatian; Francesco Pomati; Vijay P. Patil; Maria Eugenia del Rosario Llames; Piet Verburg; Lisette N. de Senerpont Domis; Hans-Peter Grossart; Hans-Peter Grossart; B.W. Ibelings; Shin-ichiro S. Matsuzaki; Gaël Dur; Peeter Nõges; Patrick Venail; Pablo Urrutia-Cordero; Pablo Urrutia-Cordero; Laurence Carvalho; Alfred Theodore Nutefe Kwasi Kpodonu; Harriet L. Wilson; Marc J. Lajeunesse; Tanner J. Williamson; Tamar Zohary;pmid: 32133744
pmc: PMC7216882
AbstractIn many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/63879Data sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10492/6180Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 161 citations 161 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 214visibility views 214 download downloads 380 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/63879Data sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10492/6180Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, France, Italy, United KingdomPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | IntEL, NSERC, NSF | Collaborative LTREB Propo... +6 projectsEC| IntEL ,NSERC ,NSF| Collaborative LTREB Proposal: Will increases in dissolved organic matter accelerate a shift in trophic status through anoxia-driven positive feedbacks in an oligotrophic lake? ,RSF| Integrated technology for environment assessment of Moscow megacity based on chemical analysis of microparticle composition in the "atmosphere - snow - road dust - soil - surface water" system (Megacity) ,NSF| Collaborative Research: Building Analytical, Synthesis, and Human Network Skills Needed for Macrosystem Science: a Next Generation Graduate Student Training Model Based on GLEON ,NSF| Collaborative LTREB Proposal: Will increases in dissolved organic matter accelerate a shift in trophic status through anoxia-driven positive feedbacks in an oligotrophic lake? ,NSF| RCN:MSB:FRA: Grassroots global network science: a macrosystems model ,NSF| OPUS: CRS Synthesis to add dissolved organic matter to the trophic paradigm: the importance of water transparency in structuring pelagic ecosystems ,NSF| Spokes: SMALL: NORTHEAST: Collaborative: Building the Community to Address Data Integration of the Ecological Long TailKevin C. Rose; Martin Schmid; Jean-Philippe Jenny; Michela Rogora; Donald C. Pierson; Gesa A. Weyhenmeyer; Chris G. McBride; Craig E. Williamson; Laura Diemer; Barbara Leoni; Benjamin M. Kraemer; Curtis L. DeGasperi; Rachel M. Pilla; Lauri Arvola; Rebecca L. North; Andrew M. Paterson; Ruben Sommaruga; Catherine L. Hein; Dörthe C. Müller-Navarra; Émilie Saulnier-Talbot; Steven Sadro; Jonathan T. Stetler; Sudeep Chandra; Piet Verburg; Peter R. Leavitt; Peter R. Leavitt; James A. Rusak; Josef Hejzlar; Lorraine L. Janus; K. David Hambright; Gretchen J. A. Hansen; John R. Jones; Eleanor B. Mackay; Hans-Peter Grossart; Hans-Peter Grossart; Lesley B. Knoll; Stephen F. Jane; Stephen F. Jane; O. Erina; Shin-ichiro S. Matsuzaki; Kathleen C. Weathers; Julita Dunalska; Julita Dunalska; Wim Thiery; Wim Thiery; Kiyoko Yokota; Giovanna Flaim; Joshua L. Mincer; R. Iestyn Woolway; R. Iestyn Woolway;The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03550-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 337 citations 337 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 68visibility views 68 download downloads 992 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03550-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United StatesPublisher:Wiley Allison R. Hrycik; Peter D. F. Isles; Rita Adrian; Matthew Albright; Linda C. Bacon; Stella A. Berger; Ruchi Bhattacharya; Hans‐Peter Grossart; Josef Hejzlar; Amy Lee Hetherington; Lesley B. Knoll; Alo Laas; Cory P. McDonald; Kellie Merrell; Jens C. Nejstgaard; Kirsten Nelson; Peeter Nõges; Andrew M. Paterson; Rachel M. Pilla; Dale M. Robertson; Lars G. Rudstam; James A. Rusak; Steven Sadro; Eugene A. Silow; Jason D. Stockwell; Huaxia Yao; Kiyoko Yokota; Donald C. Pierson;doi: 10.1111/gcb.15797
pmid: 34241940
AbstractWinter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed—a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs—is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll‐a (Chl‐a) concentration (a proxy for phytoplankton biomass) across 5–53 years for each lake. Earlier runoff generally corresponded to lower summer Chl‐a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice‐out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl‐a concentrations; however, our tested covariates had little effect on the relationship. Date of ice‐out was not clearly related to summer Chl‐a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.
VTechWorks arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert VTechWorks arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2018Publisher:B P International (a part of SCIENCEDOMAIN International) Funded by:NSERC, UKRI | RootDetect: Remote Detect...NSERC ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthBailey Hewitt; Lianna Lopez; Katrina Gaibisels; Alyssa Murdoch; Scott Higgins; John Magnuson; Andrew Paterson; James Rusak; Huaxia Yao; Sapna Sharma;Lake ice phenology (timing of ice breakup and freeze up) is a sensitive indicator of climate. We acquired time series of lake ice breakup and freeze up, local weather conditions, and large-scale climate oscillations from 1981–2015 for seven lakes in northern Wisconsin, USA, and two lakes in Ontario, Canada. Multiple linear regression models were developed to understand the drivers of lake ice phenology. We used projected air temperature and precipitation from 126 climate change scenarios to forecast the day of year of ice breakup and freeze up in 2050 and 2070. Lake ice melted 5 days earlier and froze 8 days later over the past 35 years. Warmer spring and winter air temperatures contributed to earlier ice breakup; whereas warmer November temperatures delayed lake freeze. Lake ice breakup is projected to be 13 days earlier on average by 2070, but could vary by 3 days later to 43 days earlier depending upon the degree of climatic warming by late century. Similarly, the timing of lake freeze up is projected to be delayed by 11 days on average by 2070, but could be 1 to 28 days later. Shortened seasonality of ice cover by 24 days could increase risk of algal blooms, reduce habitat for coldwater fisheries, and jeopardize survival of northern communities reliant on ice roads.
Water arrow_drop_down https://doi.org/10.9734/bpi/mo...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/mono/978-81-19217-01-4/ch8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Water arrow_drop_down https://doi.org/10.9734/bpi/mo...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/mono/978-81-19217-01-4/ch8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 CanadaPublisher:Elsevier BV Funded by:NSERCNSERCYannick Huot; Catherine A. Brown; Geneviève Potvin; Dermot Antoniades; Helen M. Baulch; Beatrix E. Beisner; Simon Bélanger; Stéphanie Brazeau; Hubert Cabana; Jeffrey A. Cardille; Paul A. del Giorgio; Irene Gregory-Eaves; Marie-Josée Fortin; Andrew S. Lang; Isabelle Laurion; Roxane Maranger; Yves T. Prairie; James A. Rusak; Pedro A. Segura; Robert Siron; John P. Smol; Rolf D. Vinebrooke; David A. Walsh;pmid: 31419692
The distribution and quality of water resources vary dramatically across Canada, and human impacts such as land-use and climate changes are exacerbating uncertainties in water supply and security. At the national level, Canada has no enforceable standards for safe drinking water and no comprehensive water-monitoring program to provide detailed, timely reporting on the state of water resources. To provide Canada's first national assessment of lake health, the NSERC Canadian Lake Pulse Network was launched in 2016 as an academic-government research partnership. LakePulse uses traditional approaches for limnological monitoring as well as state-of-the-art methods in the fields of genomics, emerging contaminants, greenhouse gases, invasive pathogens, paleolimnology, spatial modelling, statistical analysis, and remote sensing. A coordinated sampling program of about 680 lakes together with historical archives and a geomatics analysis of over 80,000 lake watersheds are used to examine the extent to which lakes are being altered now and in the future, and how this impacts aquatic ecosystem services of societal importance. Herein we review the network context, objectives and methods.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.133668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.133668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021 France, Italy, United Kingdom, ItalyPublisher:Wiley Funded by:NSF | 3rd Collaborative Researc..., UKRI | UK Status, Change and Pro...NSF| 3rd Collaborative Research Network Program (CRN3) ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Christian Torsten Seltmann; Alon Rimmer; Heidrun Feuchtmayr; Hilary M. Swain; Maria Eugenia del Rosario Llames; Dietmar Straile; Orlane Anneville; Emily R. Nodine; Georgiy Kirillin; Donald C. Pierson; Scott F. Girdner; María Belén Alfonso; Pablo Urrutia-Cordero; Pablo Urrutia-Cordero; Patrick Venail; Lars G. Rudstam; James A. Rusak; James A. Rusak; Shin-ichiro S. Matsuzaki; Evelyn E. Gaiser; Josef Hejzlar; Jennifer L. Graham; Hans-Peter Grossart; Hans-Peter Grossart; Vijay P. Patil; Jonathan P. Doubek; Elvira de Eyto; Stéphan Jacquet; Tamar Zohary; María Cintia Piccolo; Aleksandra M. Lewandowska; Wim Thiery; Steven Sadro; Stephen J. Thackeray; Curtis L. DeGasperi; Piet Verburg; Nico Salmaso; Rita Adrian; Rita Adrian; Gaël Dur; Jason D. Stockwell;handle: 10449/69028
AbstractThe intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind‐induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long‐term and high‐frequency lake datasets from 11 countries to assess the magnitude of wind‐ vs. rainstorm‐induced changes in epilimnetic temperature. We found small day‐to‐day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day‐to‐day epilimnetic temperature decreased, on average, by 0.28°C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 ± 2.7 m s−1, 1 SD) and by 0.15°C after the heaviest rainstorms (storm mean daily rainfall: 21.3 ± 9.0 mm). The largest decreases in epilimnetic temperature were observed ≥2 d after sustained strong wind or heavy rain (top 5th percentile of wind and rain events for each lake) in shallow and medium‐depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm‐induced mean epilimnetic temperature decreases were typically <2°C. Day‐to‐day temperature change, in the absence of storms, often exceeded storm‐induced temperature changes. Because storm‐induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.
Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: http://hdl.handle.net/10449/69028Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.science/hal-03230686Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.11739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: http://hdl.handle.net/10449/69028Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.science/hal-03230686Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.11739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 20 Apr 2018 Czech Republic, Sweden, United Kingdom, Czech RepublicPublisher:American Geophysical Union (AGU) Funded by:EC | C-CASCADESEC| C-CASCADESBjörnerås, Caroline; Weyhenmeyer, Gesa A.; Evans, Chris D.; Gessner, Mark O.; Grossart, Hans-Peter; Kangur, Külli; Kokorite, Ilga; Kortelainen, Pirkko; Laudon, Hjalmar; Lehtoranta, Jouni; Lottig, Noah; Monteith, Don T.; Nõges, Peeter; Nõges, Tiina; Oulehle, Filip; Riise, Gunnhild; Rusak, James A.; Räike, Antti; Sire, Janis; Sterling, Shannon; Kritzberg; Emma, S.;doi: 10.1002/2017gb005749
AbstractRecent reports of increasing iron (Fe) concentrations in freshwaters are of concern, given the fundamental role of Fe in biogeochemical processes. Still, little is known about the frequency and geographical distribution of Fe trends or about the underlying drivers. We analyzed temporal trends of Fe concentrations across 340 water bodies distributed over 10 countries in northern Europe and North America in order to gain a clearer understanding of where, to what extent, and why Fe concentrations are on the rise. We found that Fe concentrations have significantly increased in 28% of sites, and decreased in 4%, with most positive trends located in northern Europe. Regions with rising Fe concentrations tend to coincide with those with organic carbon (OC) increases. Fe and OC increases may not be directly mechanistically linked, but may nevertheless be responding to common regional‐scale drivers such as declining sulfur deposition or hydrological changes. A role of hydrological factors was supported by covarying trends in Fe and dissolved silica, as these elements tend to stem from similar soil depths. A positive relationship between Fe increases and conifer cover suggests that changing land use and expanded forestry could have contributed to enhanced Fe export, although increases were also observed in nonforested areas. We conclude that the phenomenon of increasing Fe concentrations is widespread, especially in northern Europe, with potentially significant implications for wider ecosystem biogeochemistry, and for the current browning of freshwaters.
Global Biogeochemica... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetRepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesGlobal Biogeochemical CyclesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Biogeochemical CyclesArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gb005749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 76 citations 76 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 78 Powered bymore_vert Global Biogeochemica... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetRepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesGlobal Biogeochemical CyclesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Biogeochemical CyclesArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gb005749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: Jonathan B. Shurin; Michael J. Paterson; Bernadette Pinel-Alloul; Andrew M. Paterson; +8 AuthorsJonathan B. Shurin; Michael J. Paterson; Bernadette Pinel-Alloul; Andrew M. Paterson; Wendel Keller; Blake Matthews; Norman D. Yan; Norman D. Yan; James A. Rusak; James A. Rusak; Monika Winder; Rita Adrian;pmid: 20100243
Ecology Letters (2010) 13: 453–463AbstractEnvironmental variability in space and time is a primary mechanism allowing species that share resources to coexist. Fluctuating conditions are a double edged sword for diversity, either promoting coexistence through temporal niche partitioning or excluding species by stochastic extinctions. The net effect of environmental variation on diversity is largely unknown. We examined the association between zooplankton species richness in lakes and environmental variability on interannual, seasonal and shorter time scales, as well as long‐term average conditions. We analyzed data on physical, chemical and biological limnology in 53 temperate zone lakes in North America and Europe sampled over a combined 1042 years. Large fluctuations in pH, phosphorus and dissolved organic carbon concentration on different time scales were associated with reduced zooplankton species richness. More species were found in lakes that showed greater temperature variation on all time scales. Environmental variability on different time scales showed similar or, in some cases, stronger associations with zooplankton species richness compared with long‐term average conditions. Our results suggest that temporal fluctuations in the chemical environment tend to exclude zooplankton species while temperature variability promotes greater richness. The results indicate that anthropogenic increases in temporal variability of future climates may have profound effects on biodiversity.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2009.01438.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 123 citations 123 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2009.01438.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 New Zealand, United States, France, Australia, United Kingdom, Italy, Italy, Australia, New ZealandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSF | Dimensions: Collaborative..., UKRI | RootDetect: Remote Detect...NSF| Dimensions: Collaborative Research: Lake Baikal Responses to Global Change: The Role of Genetic, Functional and Taxonomic Diversity in the Plankton ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthSharma, Sapna; Gray, Derek K.; Read, Jordan S.; O’reilly, Catherine M.; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E.; Hook, Simon; Lenters, John D.; Livingstone, David M.; Mcintyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest’eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; Macintyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Nõges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H;doi: 10.1038/sdata.2015.8
pmid: 25977814
pmc: PMC4423389
handle: 10289/9464 , 2440/94476 , 10449/24927
doi: 10.1038/sdata.2015.8
pmid: 25977814
pmc: PMC4423389
handle: 10289/9464 , 2440/94476 , 10449/24927
AbstractGlobal environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
Scientific Data arrow_drop_down Hyper Article en LigneArticle . 2015License: CC BYFull-Text: https://hal.inrae.fr/hal-02638235/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2015License: CC BYFull-Text: https://hal.inrae.fr/hal-02638235/documentUniversité Grenoble Alpes: HALArticle . 2015Full-Text: https://hal.inrae.fr/hal-02638235Data sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Full-Text: http://hdl.handle.net/2440/94476Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/24927Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2015Full-Text: https://hal.inrae.fr/hal-02638235Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2015.8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 176 citations 176 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 193visibility views 193 download downloads 341 Powered bymore_vert Scientific Data arrow_drop_down Hyper Article en LigneArticle . 2015License: CC BYFull-Text: https://hal.inrae.fr/hal-02638235/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2015License: CC BYFull-Text: https://hal.inrae.fr/hal-02638235/documentUniversité Grenoble Alpes: HALArticle . 2015Full-Text: https://hal.inrae.fr/hal-02638235Data sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Full-Text: http://hdl.handle.net/2440/94476Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/24927Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2015Full-Text: https://hal.inrae.fr/hal-02638235Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2015.8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 New Zealand, Australia, AustraliaPublisher:Wiley Rigosi, A.; Hanson, P.; Hamilton, D.; Hipsey, M.; Rusak, J.; Bois, J.; Sparber, K.; Chorus, I.; Watkinson, A.; Qin, B.; Kim, B.; Brookes, J.;A Bayesian network model was developed to assess the combined influence of nutrient conditions and climate on the occurrence of cyanobacterial blooms within lakes of diverse hydrology and nutrient supply. Physicochemical, biological, and meteorological observations were collated from 20 lakes located at different latitudes and characterized by a range of sizes and trophic states. Using these data, we built a Bayesian network to (1) analyze the sensitivity of cyanobacterial bloom development to different environmental factors and (2) determine the probability that cyanobacterial blooms would occur. Blooms were classified in three categories of hazard (low, moderate, and high) based on cell abundances. The most important factors determining cyanobacterial bloom occurrence were water temperature, nutrient availability, and the ratio of mixing depth to euphotic depth. The probability of cyanobacterial blooms was evaluated under different combinations of total phosphorus and water temperature. The Bayesian network was then applied to quantify the probability of blooms under a future climate warming scenario. The probability of the “high hazardous” category of cyanobacterial blooms increased 5% in response to either an increase in water temperature of 0.8°C (initial water temperature above 24°C) or an increase in total phosphorus from 0.01 mg/L to 0.02 mg/L. Mesotrophic lakes were particularly vulnerable to warming. Reducing nutrient concentrations counteracts the increased cyanobacterial risk associated with higher temperatures.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 United Kingdom, Switzerland, Czech Republic, France, Estonia, Italy, Germany, Czech Republic, ItalyPublisher:Wiley Publicly fundedFunded by:EC | IntEL, UKRI | Global Observatory of Lak..., NSF | SCC-IRG Track 2: Resilien... +3 projectsEC| IntEL ,UKRI| Global Observatory of Lake Responses to Environmental Change (GloboLakes) ,NSF| SCC-IRG Track 2: Resilient Water Systems: Integrating Environmental Sensor Networks and Real-Time Forecasting to Adaptively Manage Drinking Water Quality and Build Social Trust ,NSF| CNH-L: Linking Land-Use Decision Making, Water Quality, and Lake Associations to Understand Human-Natural Feedbacks in Lake Catchments ,NSF| Collaborative Research: Consequences of changing oxygen availability for carbon cycling in freshwater ecosystems ,NSF| MSB-ECA: A macrosystems science training program: developing undergraduates' simulation modeling, distributed computing, and collaborative skillsCayelan C. Carey; Karsten Rinke; R. Iestyn Woolway; Wim Thiery; Wim Thiery; Jonathan P. Doubek; Nico Salmaso; Ruchi Bhattacharya; Rita Adrian; Rita Adrian; Marieke A. Frassl; Orlane Anneville; James A. Rusak; James A. Rusak; Josef Hejzlar; Jason D. Stockwell; Lars G. Rudstam; Mikkel René Andersen; Stephen J. Thackeray; Aleksandra M. Lewandowska; Christian Torsten Seltmann; Christian Torsten Seltmann; Dietmar Straile; Emily R. Nodine; Nasime Janatian; Francesco Pomati; Vijay P. Patil; Maria Eugenia del Rosario Llames; Piet Verburg; Lisette N. de Senerpont Domis; Hans-Peter Grossart; Hans-Peter Grossart; B.W. Ibelings; Shin-ichiro S. Matsuzaki; Gaël Dur; Peeter Nõges; Patrick Venail; Pablo Urrutia-Cordero; Pablo Urrutia-Cordero; Laurence Carvalho; Alfred Theodore Nutefe Kwasi Kpodonu; Harriet L. Wilson; Marc J. Lajeunesse; Tanner J. Williamson; Tamar Zohary;pmid: 32133744
pmc: PMC7216882
AbstractIn many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/63879Data sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10492/6180Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 161 citations 161 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 214visibility views 214 download downloads 380 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/63879Data sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10492/6180Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, France, Italy, United KingdomPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | IntEL, NSERC, NSF | Collaborative LTREB Propo... +6 projectsEC| IntEL ,NSERC ,NSF| Collaborative LTREB Proposal: Will increases in dissolved organic matter accelerate a shift in trophic status through anoxia-driven positive feedbacks in an oligotrophic lake? ,RSF| Integrated technology for environment assessment of Moscow megacity based on chemical analysis of microparticle composition in the "atmosphere - snow - road dust - soil - surface water" system (Megacity) ,NSF| Collaborative Research: Building Analytical, Synthesis, and Human Network Skills Needed for Macrosystem Science: a Next Generation Graduate Student Training Model Based on GLEON ,NSF| Collaborative LTREB Proposal: Will increases in dissolved organic matter accelerate a shift in trophic status through anoxia-driven positive feedbacks in an oligotrophic lake? ,NSF| RCN:MSB:FRA: Grassroots global network science: a macrosystems model ,NSF| OPUS: CRS Synthesis to add dissolved organic matter to the trophic paradigm: the importance of water transparency in structuring pelagic ecosystems ,NSF| Spokes: SMALL: NORTHEAST: Collaborative: Building the Community to Address Data Integration of the Ecological Long TailKevin C. Rose; Martin Schmid; Jean-Philippe Jenny; Michela Rogora; Donald C. Pierson; Gesa A. Weyhenmeyer; Chris G. McBride; Craig E. Williamson; Laura Diemer; Barbara Leoni; Benjamin M. Kraemer; Curtis L. DeGasperi; Rachel M. Pilla; Lauri Arvola; Rebecca L. North; Andrew M. Paterson; Ruben Sommaruga; Catherine L. Hein; Dörthe C. Müller-Navarra; Émilie Saulnier-Talbot; Steven Sadro; Jonathan T. Stetler; Sudeep Chandra; Piet Verburg; Peter R. Leavitt; Peter R. Leavitt; James A. Rusak; Josef Hejzlar; Lorraine L. Janus; K. David Hambright; Gretchen J. A. Hansen; John R. Jones; Eleanor B. Mackay; Hans-Peter Grossart; Hans-Peter Grossart; Lesley B. Knoll; Stephen F. Jane; Stephen F. Jane; O. Erina; Shin-ichiro S. Matsuzaki; Kathleen C. Weathers; Julita Dunalska; Julita Dunalska; Wim Thiery; Wim Thiery; Kiyoko Yokota; Giovanna Flaim; Joshua L. Mincer; R. Iestyn Woolway; R. Iestyn Woolway;The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03550-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 337 citations 337 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 68visibility views 68 download downloads 992 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03550-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United StatesPublisher:Wiley Allison R. Hrycik; Peter D. F. Isles; Rita Adrian; Matthew Albright; Linda C. Bacon; Stella A. Berger; Ruchi Bhattacharya; Hans‐Peter Grossart; Josef Hejzlar; Amy Lee Hetherington; Lesley B. Knoll; Alo Laas; Cory P. McDonald; Kellie Merrell; Jens C. Nejstgaard; Kirsten Nelson; Peeter Nõges; Andrew M. Paterson; Rachel M. Pilla; Dale M. Robertson; Lars G. Rudstam; James A. Rusak; Steven Sadro; Eugene A. Silow; Jason D. Stockwell; Huaxia Yao; Kiyoko Yokota; Donald C. Pierson;doi: 10.1111/gcb.15797
pmid: 34241940
AbstractWinter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed—a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs—is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll‐a (Chl‐a) concentration (a proxy for phytoplankton biomass) across 5–53 years for each lake. Earlier runoff generally corresponded to lower summer Chl‐a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice‐out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl‐a concentrations; however, our tested covariates had little effect on the relationship. Date of ice‐out was not clearly related to summer Chl‐a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.
VTechWorks arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert VTechWorks arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2018Publisher:B P International (a part of SCIENCEDOMAIN International) Funded by:NSERC, UKRI | RootDetect: Remote Detect...NSERC ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthBailey Hewitt; Lianna Lopez; Katrina Gaibisels; Alyssa Murdoch; Scott Higgins; John Magnuson; Andrew Paterson; James Rusak; Huaxia Yao; Sapna Sharma;Lake ice phenology (timing of ice breakup and freeze up) is a sensitive indicator of climate. We acquired time series of lake ice breakup and freeze up, local weather conditions, and large-scale climate oscillations from 1981–2015 for seven lakes in northern Wisconsin, USA, and two lakes in Ontario, Canada. Multiple linear regression models were developed to understand the drivers of lake ice phenology. We used projected air temperature and precipitation from 126 climate change scenarios to forecast the day of year of ice breakup and freeze up in 2050 and 2070. Lake ice melted 5 days earlier and froze 8 days later over the past 35 years. Warmer spring and winter air temperatures contributed to earlier ice breakup; whereas warmer November temperatures delayed lake freeze. Lake ice breakup is projected to be 13 days earlier on average by 2070, but could vary by 3 days later to 43 days earlier depending upon the degree of climatic warming by late century. Similarly, the timing of lake freeze up is projected to be delayed by 11 days on average by 2070, but could be 1 to 28 days later. Shortened seasonality of ice cover by 24 days could increase risk of algal blooms, reduce habitat for coldwater fisheries, and jeopardize survival of northern communities reliant on ice roads.
Water arrow_drop_down https://doi.org/10.9734/bpi/mo...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/mono/978-81-19217-01-4/ch8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Water arrow_drop_down https://doi.org/10.9734/bpi/mo...Part of book or chapter of book . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.9734/bpi/mono/978-81-19217-01-4/ch8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 CanadaPublisher:Elsevier BV Funded by:NSERCNSERCYannick Huot; Catherine A. Brown; Geneviève Potvin; Dermot Antoniades; Helen M. Baulch; Beatrix E. Beisner; Simon Bélanger; Stéphanie Brazeau; Hubert Cabana; Jeffrey A. Cardille; Paul A. del Giorgio; Irene Gregory-Eaves; Marie-Josée Fortin; Andrew S. Lang; Isabelle Laurion; Roxane Maranger; Yves T. Prairie; James A. Rusak; Pedro A. Segura; Robert Siron; John P. Smol; Rolf D. Vinebrooke; David A. Walsh;pmid: 31419692
The distribution and quality of water resources vary dramatically across Canada, and human impacts such as land-use and climate changes are exacerbating uncertainties in water supply and security. At the national level, Canada has no enforceable standards for safe drinking water and no comprehensive water-monitoring program to provide detailed, timely reporting on the state of water resources. To provide Canada's first national assessment of lake health, the NSERC Canadian Lake Pulse Network was launched in 2016 as an academic-government research partnership. LakePulse uses traditional approaches for limnological monitoring as well as state-of-the-art methods in the fields of genomics, emerging contaminants, greenhouse gases, invasive pathogens, paleolimnology, spatial modelling, statistical analysis, and remote sensing. A coordinated sampling program of about 680 lakes together with historical archives and a geomatics analysis of over 80,000 lake watersheds are used to examine the extent to which lakes are being altered now and in the future, and how this impacts aquatic ecosystem services of societal importance. Herein we review the network context, objectives and methods.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.133668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.133668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021 France, Italy, United Kingdom, ItalyPublisher:Wiley Funded by:NSF | 3rd Collaborative Researc..., UKRI | UK Status, Change and Pro...NSF| 3rd Collaborative Research Network Program (CRN3) ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Christian Torsten Seltmann; Alon Rimmer; Heidrun Feuchtmayr; Hilary M. Swain; Maria Eugenia del Rosario Llames; Dietmar Straile; Orlane Anneville; Emily R. Nodine; Georgiy Kirillin; Donald C. Pierson; Scott F. Girdner; María Belén Alfonso; Pablo Urrutia-Cordero; Pablo Urrutia-Cordero; Patrick Venail; Lars G. Rudstam; James A. Rusak; James A. Rusak; Shin-ichiro S. Matsuzaki; Evelyn E. Gaiser; Josef Hejzlar; Jennifer L. Graham; Hans-Peter Grossart; Hans-Peter Grossart; Vijay P. Patil; Jonathan P. Doubek; Elvira de Eyto; Stéphan Jacquet; Tamar Zohary; María Cintia Piccolo; Aleksandra M. Lewandowska; Wim Thiery; Steven Sadro; Stephen J. Thackeray; Curtis L. DeGasperi; Piet Verburg; Nico Salmaso; Rita Adrian; Rita Adrian; Gaël Dur; Jason D. Stockwell;handle: 10449/69028
AbstractThe intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind‐induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long‐term and high‐frequency lake datasets from 11 countries to assess the magnitude of wind‐ vs. rainstorm‐induced changes in epilimnetic temperature. We found small day‐to‐day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day‐to‐day epilimnetic temperature decreased, on average, by 0.28°C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 ± 2.7 m s−1, 1 SD) and by 0.15°C after the heaviest rainstorms (storm mean daily rainfall: 21.3 ± 9.0 mm). The largest decreases in epilimnetic temperature were observed ≥2 d after sustained strong wind or heavy rain (top 5th percentile of wind and rain events for each lake) in shallow and medium‐depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm‐induced mean epilimnetic temperature decreases were typically <2°C. Day‐to‐day temperature change, in the absence of storms, often exceeded storm‐induced temperature changes. Because storm‐induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.
Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: http://hdl.handle.net/10449/69028Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.science/hal-03230686Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.11739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2021Full-Text: http://hdl.handle.net/10449/69028Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.science/hal-03230686Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.11739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 20 Apr 2018 Czech Republic, Sweden, United Kingdom, Czech RepublicPublisher:American Geophysical Union (AGU) Funded by:EC | C-CASCADESEC| C-CASCADESBjörnerås, Caroline; Weyhenmeyer, Gesa A.; Evans, Chris D.; Gessner, Mark O.; Grossart, Hans-Peter; Kangur, Külli; Kokorite, Ilga; Kortelainen, Pirkko; Laudon, Hjalmar; Lehtoranta, Jouni; Lottig, Noah; Monteith, Don T.; Nõges, Peeter; Nõges, Tiina; Oulehle, Filip; Riise, Gunnhild; Rusak, James A.; Räike, Antti; Sire, Janis; Sterling, Shannon; Kritzberg; Emma, S.;doi: 10.1002/2017gb005749
AbstractRecent reports of increasing iron (Fe) concentrations in freshwaters are of concern, given the fundamental role of Fe in biogeochemical processes. Still, little is known about the frequency and geographical distribution of Fe trends or about the underlying drivers. We analyzed temporal trends of Fe concentrations across 340 water bodies distributed over 10 countries in northern Europe and North America in order to gain a clearer understanding of where, to what extent, and why Fe concentrations are on the rise. We found that Fe concentrations have significantly increased in 28% of sites, and decreased in 4%, with most positive trends located in northern Europe. Regions with rising Fe concentrations tend to coincide with those with organic carbon (OC) increases. Fe and OC increases may not be directly mechanistically linked, but may nevertheless be responding to common regional‐scale drivers such as declining sulfur deposition or hydrological changes. A role of hydrological factors was supported by covarying trends in Fe and dissolved silica, as these elements tend to stem from similar soil depths. A positive relationship between Fe increases and conifer cover suggests that changing land use and expanded forestry could have contributed to enhanced Fe export, although increases were also observed in nonforested areas. We conclude that the phenomenon of increasing Fe concentrations is widespread, especially in northern Europe, with potentially significant implications for wider ecosystem biogeochemistry, and for the current browning of freshwaters.
Global Biogeochemica... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetRepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesGlobal Biogeochemical CyclesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Biogeochemical CyclesArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gb005749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 76 citations 76 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 78 Powered bymore_vert Global Biogeochemica... arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetRepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesGlobal Biogeochemical CyclesArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Biogeochemical CyclesArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gb005749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: Jonathan B. Shurin; Michael J. Paterson; Bernadette Pinel-Alloul; Andrew M. Paterson; +8 AuthorsJonathan B. Shurin; Michael J. Paterson; Bernadette Pinel-Alloul; Andrew M. Paterson; Wendel Keller; Blake Matthews; Norman D. Yan; Norman D. Yan; James A. Rusak; James A. Rusak; Monika Winder; Rita Adrian;pmid: 20100243
Ecology Letters (2010) 13: 453–463AbstractEnvironmental variability in space and time is a primary mechanism allowing species that share resources to coexist. Fluctuating conditions are a double edged sword for diversity, either promoting coexistence through temporal niche partitioning or excluding species by stochastic extinctions. The net effect of environmental variation on diversity is largely unknown. We examined the association between zooplankton species richness in lakes and environmental variability on interannual, seasonal and shorter time scales, as well as long‐term average conditions. We analyzed data on physical, chemical and biological limnology in 53 temperate zone lakes in North America and Europe sampled over a combined 1042 years. Large fluctuations in pH, phosphorus and dissolved organic carbon concentration on different time scales were associated with reduced zooplankton species richness. More species were found in lakes that showed greater temperature variation on all time scales. Environmental variability on different time scales showed similar or, in some cases, stronger associations with zooplankton species richness compared with long‐term average conditions. Our results suggest that temporal fluctuations in the chemical environment tend to exclude zooplankton species while temperature variability promotes greater richness. The results indicate that anthropogenic increases in temporal variability of future climates may have profound effects on biodiversity.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2009.01438.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 123 citations 123 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2009.01438.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 New Zealand, United States, France, Australia, United Kingdom, Italy, Italy, Australia, New ZealandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSF | Dimensions: Collaborative..., UKRI | RootDetect: Remote Detect...NSF| Dimensions: Collaborative Research: Lake Baikal Responses to Global Change: The Role of Genetic, Functional and Taxonomic Diversity in the Plankton ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthSharma, Sapna; Gray, Derek K.; Read, Jordan S.; O’reilly, Catherine M.; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E.; Hook, Simon; Lenters, John D.; Livingstone, David M.; Mcintyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest’eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; Macintyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Nõges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H;doi: 10.1038/sdata.2015.8
pmid: 25977814
pmc: PMC4423389
handle: 10289/9464 , 2440/94476 , 10449/24927
doi: 10.1038/sdata.2015.8
pmid: 25977814
pmc: PMC4423389
handle: 10289/9464 , 2440/94476 , 10449/24927
AbstractGlobal environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
Scientific Data arrow_drop_down Hyper Article en LigneArticle . 2015License: CC BYFull-Text: https://hal.inrae.fr/hal-02638235/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2015License: CC BYFull-Text: https://hal.inrae.fr/hal-02638235/documentUniversité Grenoble Alpes: HALArticle . 2015Full-Text: https://hal.inrae.fr/hal-02638235Data sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Full-Text: http://hdl.handle.net/2440/94476Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/24927Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2015Full-Text: https://hal.inrae.fr/hal-02638235Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2015.8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 176 citations 176 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 193visibility views 193 download downloads 341 Powered bymore_vert Scientific Data arrow_drop_down Hyper Article en LigneArticle . 2015License: CC BYFull-Text: https://hal.inrae.fr/hal-02638235/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2015License: CC BYFull-Text: https://hal.inrae.fr/hal-02638235/documentUniversité Grenoble Alpes: HALArticle . 2015Full-Text: https://hal.inrae.fr/hal-02638235Data sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Full-Text: http://hdl.handle.net/2440/94476Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/24927Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2015Full-Text: https://hal.inrae.fr/hal-02638235Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2015.8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu