- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: Swathi Yempally; John John Cabibihan; Deepalekshmi Ponnamma;This article presents an environmentally friendly, low‐cost polymer nanocomposite, polyvinyl alcohol/sodium alginate‐graphene‐zinc oxide (PVA‐SA/G‐ZnO) based triboelectric nanogenerator by spin coating. ZnO quantum dots of average particle size <10 nm and the graphene oxide (GO)‐doped ZnO are synthesized by co‐precipitation following ageing. ZnO and G‐ZnO particles are filled into the PVA/SA blend system using the solution mixing method. Spin‐coated films of ≈1.2 μm and casted films of 120 μm thicknesses were used to prepare triboelectric nanogenerators (TENGs) to test the output voltage performances. Irrespective of the thickness values, the films gave similar voltage responses with contact electrification. This illustrates triboelectric power generation as a surface charge carrier phenomenon based on morphological analyses by scanning electron microscope (SEM) and atomic force microscopy (AFM). The maximum output voltage of 0.24 V was approximately 5 times higher for the PVA/SA composite containing 2 wt% G‐ZnO nanomaterials compared to the neat polymer are obtained. The nanocomposites also demonstrate excellent dielectric constant (22 times higher) values, suggesting the role of the biodegradable thin‐film TENGs in various self‐powering devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: Swathi Yempally; John John Cabibihan; Deepalekshmi Ponnamma;This article presents an environmentally friendly, low‐cost polymer nanocomposite, polyvinyl alcohol/sodium alginate‐graphene‐zinc oxide (PVA‐SA/G‐ZnO) based triboelectric nanogenerator by spin coating. ZnO quantum dots of average particle size <10 nm and the graphene oxide (GO)‐doped ZnO are synthesized by co‐precipitation following ageing. ZnO and G‐ZnO particles are filled into the PVA/SA blend system using the solution mixing method. Spin‐coated films of ≈1.2 μm and casted films of 120 μm thicknesses were used to prepare triboelectric nanogenerators (TENGs) to test the output voltage performances. Irrespective of the thickness values, the films gave similar voltage responses with contact electrification. This illustrates triboelectric power generation as a surface charge carrier phenomenon based on morphological analyses by scanning electron microscope (SEM) and atomic force microscopy (AFM). The maximum output voltage of 0.24 V was approximately 5 times higher for the PVA/SA composite containing 2 wt% G‐ZnO nanomaterials compared to the neat polymer are obtained. The nanocomposites also demonstrate excellent dielectric constant (22 times higher) values, suggesting the role of the biodegradable thin‐film TENGs in various self‐powering devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300992&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu