Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marta Vannoni; Véronique Créach; Sophie Lozach; Jon Barry; +1 Authors

    Chlorination is a widely used method to prevent biofouling in power station cooling water systems in coastal and estuarine environments. This study evaluated the impact of chlorination together with temperature increase to simulate primary entrainment of a phytoplankton community. Biomass, diversity, and photosynthetic activity were monitored over 72 hours to establish impacts on the phytoplankton community. Biomass was significantly reduced after treatment. The mean cell size of the population significantly increased immediately after treatment highlighting an impact on the smaller cell size species of the community (picophytoplankton). Changes in accessory pigments composition suggest an effect on groups such as Prasinophyceae, Cyanobacteria and Chlorophycea. Species composition, dominated by diatoms, was also affected with Skeletonema marinoi and Asterionellopsis glacialis amongst the most sensitive species. Photosynthetic activity was affected in the short term but recovered after 48 hours. This study shows that by using a combination of measurements (e.g biomass, diversity, and physiology) the effects of entrainment in power station cooling water systems, that may be of longer-term significance for specific functional groups of phytoplankton communities, can be discerned. These changes would not necessarily be seen using individual techniques alone such as cell number counts or biomass assessment which may indicate apparent community recovery.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Toxicology
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Toxicology
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jon Barry; Marta Vannoni; Dave Sheahan; Véronique Créach;

    Chlorination is a widely used antifouling method for freshwater and marine applications. Chlorine added to seawater reacts to form oxidants that are toxic to biofouling organisms. Further, the oxidants that result are short-lived, but may nevertheless affect non-target species in waterbodies receiving the antifouling effluent. This study evaluated the toxicity of chlorinated seawater (e.g. following sodium hypochlorite addition) on two different species of marine benthic diatoms (Achnanthes spp., and Navicula pelliculosa), which are representative of microphytobenthos communities - an important component in coastal habitats that may be exposed to chlorinated seawater. To evaluate the growth inhibition over a 72 h period, algae were immobilised in alginate beads and exposed to different levels of chlorination in a flow through system. Growth rates and physiological condition of the microalgae were evaluated using a Fast Repetition Rate fluorometer (FRRf). To determine whether alginate influenced the sensitivity of algal response, studies were also conducted in a static test system (without renewal of test solutions) using both free cells and immobilised cells with initial chlorine added to achieve a similar range of concentrations as those used in the flow-through study. Within the first hour of the exposure period there was an indication that, for both species, the free algal cells in the static system were more sensitive to exposure to chlorinated seawater than were alginate-immobilised cells in the flow through system. Immobilised cells in a static system with a single addition of chlorine were also less sensitive to chlorination than free algal cells. However, for periods of 24 h or more due to decay of TRO in the static system the exposure of immobilised algae in the flow through system had a greater impact and hence lower effect concentrations. For the flow-through studies Achnanthes spp. was the most sensitive after 72 h exposure with a potential no effect concentration EC10 value of 0.02 mg l-1 as Cl2 equivalents expressed as total residual oxidants (TRO) compared 0.04 mg l-1 TRO for N. pelliculosa. Immobilisation of algal cells in alginate was found to be an effective means of determining the impact of chlorination and is likely to be effective for other non-persistent substances. Based on the data produced, the extent and significance of ecological effects of chlorination upon algal species typical of microphytobenthos are likely to be limited providing discharges comply with a maximum allowable concentration of 0.01 mg l-1 TRO at the edge of an agreed mixing zone.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Toxicology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Toxicology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marta Vannoni; Véronique Créach; Sophie Lozach; Jon Barry; +1 Authors

    Chlorination is a widely used method to prevent biofouling in power station cooling water systems in coastal and estuarine environments. This study evaluated the impact of chlorination together with temperature increase to simulate primary entrainment of a phytoplankton community. Biomass, diversity, and photosynthetic activity were monitored over 72 hours to establish impacts on the phytoplankton community. Biomass was significantly reduced after treatment. The mean cell size of the population significantly increased immediately after treatment highlighting an impact on the smaller cell size species of the community (picophytoplankton). Changes in accessory pigments composition suggest an effect on groups such as Prasinophyceae, Cyanobacteria and Chlorophycea. Species composition, dominated by diatoms, was also affected with Skeletonema marinoi and Asterionellopsis glacialis amongst the most sensitive species. Photosynthetic activity was affected in the short term but recovered after 48 hours. This study shows that by using a combination of measurements (e.g biomass, diversity, and physiology) the effects of entrainment in power station cooling water systems, that may be of longer-term significance for specific functional groups of phytoplankton communities, can be discerned. These changes would not necessarily be seen using individual techniques alone such as cell number counts or biomass assessment which may indicate apparent community recovery.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Toxicology
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Toxicology
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jon Barry; Marta Vannoni; Dave Sheahan; Véronique Créach;

    Chlorination is a widely used antifouling method for freshwater and marine applications. Chlorine added to seawater reacts to form oxidants that are toxic to biofouling organisms. Further, the oxidants that result are short-lived, but may nevertheless affect non-target species in waterbodies receiving the antifouling effluent. This study evaluated the toxicity of chlorinated seawater (e.g. following sodium hypochlorite addition) on two different species of marine benthic diatoms (Achnanthes spp., and Navicula pelliculosa), which are representative of microphytobenthos communities - an important component in coastal habitats that may be exposed to chlorinated seawater. To evaluate the growth inhibition over a 72 h period, algae were immobilised in alginate beads and exposed to different levels of chlorination in a flow through system. Growth rates and physiological condition of the microalgae were evaluated using a Fast Repetition Rate fluorometer (FRRf). To determine whether alginate influenced the sensitivity of algal response, studies were also conducted in a static test system (without renewal of test solutions) using both free cells and immobilised cells with initial chlorine added to achieve a similar range of concentrations as those used in the flow-through study. Within the first hour of the exposure period there was an indication that, for both species, the free algal cells in the static system were more sensitive to exposure to chlorinated seawater than were alginate-immobilised cells in the flow through system. Immobilised cells in a static system with a single addition of chlorine were also less sensitive to chlorination than free algal cells. However, for periods of 24 h or more due to decay of TRO in the static system the exposure of immobilised algae in the flow through system had a greater impact and hence lower effect concentrations. For the flow-through studies Achnanthes spp. was the most sensitive after 72 h exposure with a potential no effect concentration EC10 value of 0.02 mg l-1 as Cl2 equivalents expressed as total residual oxidants (TRO) compared 0.04 mg l-1 TRO for N. pelliculosa. Immobilisation of algal cells in alginate was found to be an effective means of determining the impact of chlorination and is likely to be effective for other non-persistent substances. Based on the data produced, the extent and significance of ecological effects of chlorination upon algal species typical of microphytobenthos are likely to be limited providing discharges comply with a maximum allowable concentration of 0.01 mg l-1 TRO at the edge of an agreed mixing zone.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Aquatic Toxicology
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aquatic Toxicologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Aquatic Toxicology
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph