- home
- Advanced Search
- Energy Research
- 11. Sustainability
- Energy Research
- 11. Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2016 Norway, Italy, NorwayPublisher:Elsevier BV D'Ercole, Marianna; Righetti, Maurizio; Ugarelli, Rita Maria; BERARDI, Luigi; Bertola, Paolo;handle: 11250/2424566 , 11564/706767 , 11589/108145
AbstractThere is a strong link between water and energy in municipal water systems then the Alliance to Save Energy coined the term “Watergy” [1].Each component of the integrated water system contributes differently to the energy balance. With regard to urban water distribution systems (WDS), the pumping energy cost represents the single largest part of the total operational cost, also magnified by every litre of water lost to leaks. Even a small increase in operational efficiency may result in significant cost savings to the water industries.Therefore the inefficient management of water distribution systems results not only into depletion of water resources but also into energy consumption that increase CO2 emissions related also to the treatment of water volumes greater than needed, with use of excessive chemical components and consequent higher environmental global impact.The research outlined in this contribution was born with the aim to develop appropriate methodologies and tools to support the optimization of the WDS performance, in terms of water saving and reduction of energy consumptions and consequently environmental impacts. The integration of advanced WDS hydraulic modelling with a material and energy flow analysis is proposed herein, where the output of the hydraulic simulations permits to get more accurate input for a metabolic analysis of the system. Next phases of this research will test the integrated model under different scenarios, aimed at quantifying the environmental impact of different WDS management solutions by means of selected indicators.
ARUdA arrow_drop_down Archivio Istituzionale della Ricerca - Politecnico di BariConference object . 2016License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proeng.2016.11.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 4 Powered bymore_vert ARUdA arrow_drop_down Archivio Istituzionale della Ricerca - Politecnico di BariConference object . 2016License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proeng.2016.11.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Menapace, Andrea; Santopietro, Simone; Gargano, Rudy; Righetti, Maurizio;doi: 10.3390/en14175344
handle: 11580/89439
Modelling heat load is a crucial challenge for the proper management of heat production and distribution. Several studies have tackled this issue at building and urban levels, however, the current scale of interest is shifting to the district level due to the new paradigm of the smart system. This study presents a stochastic procedure to model district heat load with a different number of buildings aggregation. The proposed method is based on a superimposition approach by analysing the seasonal component using a linear regression model on the outdoor temperature and the intra-daily component through a bi-parametric distribution of different times of the day. Moreover, an empirical relationship, that estimates the demand variation given the average demand together with a user aggregation coefficient, is proposed. To assess the effectiveness of the proposed methodology, the study of a group of residential users connected to the district heating system of Bozen-Bolzano is carried out. In addition, an application on a three-day prevision shows the suitability of this approach. The final purpose is to provide a flexible tool for district heat load characterisation and prevision based on a sample of time series data and summary information about the buildings belonging to the analysed district.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Marco Baratieri; Jakob Zinck Thellufsen; Giovanni Pernigotto; Henrik Lund; Maurizio Righetti; Andrea Menapace; Andrea Menapace; Francesca Roberti; Andrea Gasparella;Sustainable urban energy planning depends on how renewable and local sources are integrated, how smart systems are implemented, and how synergies between regional and national policies are maximized. This study presents a methodology for the design of 100% renewable energy systems aiming to optimize the use of biomass and energy exchange with the national system while ensuring electricity import and export balance. The proposed procedure combines the robustness of the EnergyPLAN hourly energy system simulation model with the flexibility of multiple-criteria decision analysis. The result is a suitable methodology able to identify the best energy scenario based on a deep multi-parameter analysis from a technical point of view. A test case is proposed aiming at achieving 100% renewable energy for the Alpine city of Bozen-Bolzano in 2050.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2016 Norway, Italy, NorwayPublisher:Elsevier BV D'Ercole, Marianna; Righetti, Maurizio; Ugarelli, Rita Maria; BERARDI, Luigi; Bertola, Paolo;handle: 11250/2424566 , 11564/706767 , 11589/108145
AbstractThere is a strong link between water and energy in municipal water systems then the Alliance to Save Energy coined the term “Watergy” [1].Each component of the integrated water system contributes differently to the energy balance. With regard to urban water distribution systems (WDS), the pumping energy cost represents the single largest part of the total operational cost, also magnified by every litre of water lost to leaks. Even a small increase in operational efficiency may result in significant cost savings to the water industries.Therefore the inefficient management of water distribution systems results not only into depletion of water resources but also into energy consumption that increase CO2 emissions related also to the treatment of water volumes greater than needed, with use of excessive chemical components and consequent higher environmental global impact.The research outlined in this contribution was born with the aim to develop appropriate methodologies and tools to support the optimization of the WDS performance, in terms of water saving and reduction of energy consumptions and consequently environmental impacts. The integration of advanced WDS hydraulic modelling with a material and energy flow analysis is proposed herein, where the output of the hydraulic simulations permits to get more accurate input for a metabolic analysis of the system. Next phases of this research will test the integrated model under different scenarios, aimed at quantifying the environmental impact of different WDS management solutions by means of selected indicators.
ARUdA arrow_drop_down Archivio Istituzionale della Ricerca - Politecnico di BariConference object . 2016License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proeng.2016.11.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 4 Powered bymore_vert ARUdA arrow_drop_down Archivio Istituzionale della Ricerca - Politecnico di BariConference object . 2016License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.proeng.2016.11.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Menapace, Andrea; Santopietro, Simone; Gargano, Rudy; Righetti, Maurizio;doi: 10.3390/en14175344
handle: 11580/89439
Modelling heat load is a crucial challenge for the proper management of heat production and distribution. Several studies have tackled this issue at building and urban levels, however, the current scale of interest is shifting to the district level due to the new paradigm of the smart system. This study presents a stochastic procedure to model district heat load with a different number of buildings aggregation. The proposed method is based on a superimposition approach by analysing the seasonal component using a linear regression model on the outdoor temperature and the intra-daily component through a bi-parametric distribution of different times of the day. Moreover, an empirical relationship, that estimates the demand variation given the average demand together with a user aggregation coefficient, is proposed. To assess the effectiveness of the proposed methodology, the study of a group of residential users connected to the district heating system of Bozen-Bolzano is carried out. In addition, an application on a three-day prevision shows the suitability of this approach. The final purpose is to provide a flexible tool for district heat load characterisation and prevision based on a sample of time series data and summary information about the buildings belonging to the analysed district.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5344/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Elsevier BV Marco Baratieri; Jakob Zinck Thellufsen; Giovanni Pernigotto; Henrik Lund; Maurizio Righetti; Andrea Menapace; Andrea Menapace; Francesca Roberti; Andrea Gasparella;Sustainable urban energy planning depends on how renewable and local sources are integrated, how smart systems are implemented, and how synergies between regional and national policies are maximized. This study presents a methodology for the design of 100% renewable energy systems aiming to optimize the use of biomass and energy exchange with the national system while ensuring electricity import and export balance. The proposed procedure combines the robustness of the EnergyPLAN hourly energy system simulation model with the flexibility of multiple-criteria decision analysis. The result is a suitable methodology able to identify the best energy scenario based on a deep multi-parameter analysis from a technical point of view. A test case is proposed aiming at achieving 100% renewable energy for the Alpine city of Bozen-Bolzano in 2050.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu