- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Italy, FrancePublisher:Frontiers Media SA Agostini S.; Houlbreque F.; Biscere T.; Harvey B. P.; Heitzman J. M.; Takimoto R.; Yamazaki W.; Milazzo M.; Rodolfo-Metalpa R.;handle: 10447/492303
Coral communities around the world are projected to be negatively affected by ocean acidification. Not all coral species will respond in the same manner to rising CO2 levels. Evidence from naturally acidified areas such as CO2 seeps have shown that although a few species are resistant to elevated CO2, most lack sufficient resistance resulting in their decline. This has led to the simple grouping of coral species into “winners” and “losers,” but the physiological traits supporting this ecological assessment are yet to be fully understood. Here using CO2 seeps, in two biogeographically distinct regions, we investigated whether physiological traits related to energy production [mitochondrial electron transport systems (ETSAs) activities] and biomass (protein contents) differed between winning and losing species in order to identify possible physiological traits of resistance to ocean acidification and whether they can be acquired during short-term transplantations. We show that winning species had a lower biomass (protein contents per coral surface area) resulting in a higher potential for energy production (biomass specific ETSA: ETSA per protein contents) compared to losing species. We hypothesize that winning species inherently allocate more energy toward inorganic growth (calcification) compared to somatic (tissue) growth. In contrast, we found that losing species that show a higher biomass under reference pCO2 experienced a loss in biomass and variable response in area-specific ETSA that did not translate in an increase in biomass-specific ETSA following either short-term (4–5 months) or even life-long acclimation to elevated pCO2 conditions. Our results suggest that resistance to ocean acidification in corals may not be acquired within a single generation or through the selection of physiologically resistant individuals. This reinforces current evidence suggesting that ocean acidification will reshape coral communities around the world, selecting species that have an inherent resistance to elevated pCO2.
Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.600836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.600836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2019 United Kingdom, France, United KingdomPublisher:Informa UK Limited Fitzer, Susan C; Bin San Chan, Vera; Meng, Yuan; Chandra Rajan, Kanmani; Suzuki, Michio; Not, Christelle; Toyofuku, Takashi; Falkenberg, Laura; Byrne, Maria; Harvey, Ben P; de Wit, Pierre; Cusack, Maggie; Gao, K S; Taylor, Paul; Dupont, Sam; Hall-Spencer, Jason M; Thiyagarajan, V;handle: 1893/30038
Ocean acidification (OA) is the decline in seawater pH and saturation levels of calcium carbonate (CaCO3) minerals that has led to concerns for calcifying organisms such as corals, oysters and mussels because of the adverse effects of OA on their biomineralisation, shells and skeletons. A range of cellular biology, geochemistry and materials science approaches have been used to explore biomineralisation. These techniques have revealed that responses to seawater acidification can be highly variable among species, yet the underlying mechanisms remain largely unresolved. To assess the impacts of global OA, researchers will need to apply a range of tools developed across disciplines, many of which are emerging and have not yet been used in this context. This review outlines techniques that could be applied to study OA-induced alterations in the mechanisms of biomineralisation and their ultimate effects on shells and skeletons. We illustrate how to characterise, quantify and monitor the process of biomineralisation in the context of global climate change and OA. We highlight the basic principles, as well as the advantages and disadvantages, of established, emerging and future techniques for OA researchers. A combination of these techniques will enable a holistic approach and better understanding of the potential impact of OA on biomineralisation and its consequences for marine calcifiers and associated ecosystems.
http://dspace.stir.a... arrow_drop_down https://doi.org/10.1201/978042...Part of book or chapter of book . 2019 . Peer-reviewedData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1201/9780429026379-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert http://dspace.stir.a... arrow_drop_down https://doi.org/10.1201/978042...Part of book or chapter of book . 2019 . Peer-reviewedData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1201/9780429026379-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, France, SpainPublisher:Wiley Funded by:EC | MEDSEAEC| MEDSEAAuthors: Jason M. Hall-Spencer; Jason M. Hall-Spencer; Lucia Porzio; Paulo Antunes Horta; +5 AuthorsJason M. Hall-Spencer; Jason M. Hall-Spencer; Lucia Porzio; Paulo Antunes Horta; Line Le Gall; Viviana Peña; Marco Milazzo; Sylvain Agostini; Ben P. Harvey;AbstractCalcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance. We found a decrease in the taxonomic diversity of coralline algae with increasing acidification with more than half of the species lost in high pCO2 conditions. Sporolithales is the oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low Mg calcite deposition; it is less diverse today and was the most sensitive to ocean acidification. Corallinales were also reduced in cover and diversity but several species survived at high pCO2; it is the most recent order of coralline algae and originated when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp decline in cover and thickness of coralline algal carbonate deposits at high pCO2 highlighted their lower fitness in response to ocean acidification. Reductions in CO2 emissions are needed to limit the risk of losing coralline algal diversity.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2021Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2021Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Australia, Australia, United KingdomPublisher:Wiley Funded by:EC | GLOBEFEC| GLOBEFAuthors: Philippa Moore; Philippa Moore; Dylan Gwynn-Jones; Ben P. Harvey;AbstractOcean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta‐analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life‐history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single‐stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticle . 2013License: CC BYFull-Text: https://eprints.ncl.ac.uk/271997Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/272001Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2013License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2013/698Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 419 citations 419 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticle . 2013License: CC BYFull-Text: https://eprints.ncl.ac.uk/271997Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/272001Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2013License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2013/698Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2017Publisher:PANGAEA Authors: Harvey, Ben P; Moore, Pippa J;While there is increasing evidence for the impacts of climate change at the individual level, much less is known about how species' likely idiosyncratic responses may alter ecological interactions. Here, we demonstrate that ocean acidification and warming not only directly alter species' (individual) physiological performance, but also their predator-prey dynamics. Our results demonstrate that tissue production (used as a proxy for prey quality) in the barnacle Semibalanus balanoides was reduced under scenarios of future climate change, and hence their ability to support energy acquisition for dogwhelk Nucella lapillus through food provision was diminished. However, rather than increasing their feeding rates as a compensatory mechanism, consumption rates of N. lapillus were reduced to the point that they exhibited starvation (a loss of somatic tissue), despite prey resources remaining abundant. The resilience of any marine organism to stressors is fundamentally linked to their ability to obtain and assimilate energy. Therefore, our findings suggest that the cost of living under future climate change may surpass the energy intake from consumption rates, which is likely exacerbated through the bottom-up effects of reduced prey quality. If, as our results suggest, changes in trophic transfer of energy are more common in a warmer, high CO2 world, such alterations to the predator-prey dynamic may have negative consequences for the acquisition of energy in the predator and result in energetic trade-offs. Given the importance of predator-prey interactions in structuring marine communities, future climate change is likely to have major consequences for community composition and the structure and function of ecosystems. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2017-11-21. Supplement to: Harvey, Ben P; Moore, Pippa J (2017): Ocean warming and acidification prevent compensatory response in a predator to reduced prey quality. Marine Ecology Progress Series, 563, 111-122
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2017License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.883315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2017License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.883315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Agostini, Sylvain; Houlbrèque, Fanny; Biscéré, Tom; Harvey, Ben P.; Heitzman, Joshua M.; Takimoto, Risa; Yamazaki, Wataru; Milazzo, Marco; Rodolfo-Metalpa, Riccardo;Datasets associated with Agostini, S., Houlbreque, F., Biscéré, T., Harvey, B. P., Heitzman, J. M., Takimoto, R., et al. (2020). Greater mitochondrial energy production provides resistance to ocean acidification in ‘winning’ hermatypic corals. Front. Mar. Sci. 7. doi:10.3389/fmars.2020.600836.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4415126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4415126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Agostini, Sylvain; Harvey, Ben P; Milazzo, Marco; Wada, Shigeki; Kon, Koetsu; Floc'h, Nicolas; Komatsu, K; Kuroyama, Mayumi; Hall-Spencer, Jason M;Ocean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral-dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral-dominated ecosystems. We show that increased herbivory by warm-water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf-dominated ecosystems, rather than the complex coral-dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-05-11.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.944056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.944056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Jason M. Hall-Spencer; Jason M. Hall-Spencer; Shigeki Wada; Mayumi Kuroyama; Nicolas Floc’h; Ben P. Harvey; Marco Milazzo; Kosei Komatsu; Sylvain Agostini; Koetsu Kon;AbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Ben P. Harvey; Katie E. Marshall; Christopher D.G. Harley; Bayden D. Russell;pmid: 34593256
Marine heatwaves (MHWs), discrete but prolonged periods of anomalously warm seawater, can fundamentally restructure marine communities and ecosystems. Although our understanding of these events has improved in recent years, key knowledge gaps hinder our ability to predict how MHWs will affect patterns of biodiversity. Here, we outline a functional trait approach that enables a better understanding of which species and communities will be most vulnerable to MHWs, and how the distribution of species and composition of communities are likely to shift through time. Our perspective allows progress toward unifying extreme events and longer term environmental trends as co-drivers of ecological change, with the incorporation of species traits into our predictions allowing for a greater capacity to make management decisions.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.09.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.09.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Italy, FrancePublisher:Frontiers Media SA Agostini S.; Houlbreque F.; Biscere T.; Harvey B. P.; Heitzman J. M.; Takimoto R.; Yamazaki W.; Milazzo M.; Rodolfo-Metalpa R.;handle: 10447/492303
Coral communities around the world are projected to be negatively affected by ocean acidification. Not all coral species will respond in the same manner to rising CO2 levels. Evidence from naturally acidified areas such as CO2 seeps have shown that although a few species are resistant to elevated CO2, most lack sufficient resistance resulting in their decline. This has led to the simple grouping of coral species into “winners” and “losers,” but the physiological traits supporting this ecological assessment are yet to be fully understood. Here using CO2 seeps, in two biogeographically distinct regions, we investigated whether physiological traits related to energy production [mitochondrial electron transport systems (ETSAs) activities] and biomass (protein contents) differed between winning and losing species in order to identify possible physiological traits of resistance to ocean acidification and whether they can be acquired during short-term transplantations. We show that winning species had a lower biomass (protein contents per coral surface area) resulting in a higher potential for energy production (biomass specific ETSA: ETSA per protein contents) compared to losing species. We hypothesize that winning species inherently allocate more energy toward inorganic growth (calcification) compared to somatic (tissue) growth. In contrast, we found that losing species that show a higher biomass under reference pCO2 experienced a loss in biomass and variable response in area-specific ETSA that did not translate in an increase in biomass-specific ETSA following either short-term (4–5 months) or even life-long acclimation to elevated pCO2 conditions. Our results suggest that resistance to ocean acidification in corals may not be acquired within a single generation or through the selection of physiologically resistant individuals. This reinforces current evidence suggesting that ocean acidification will reshape coral communities around the world, selecting species that have an inherent resistance to elevated pCO2.
Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.600836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.600836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2019 United Kingdom, France, United KingdomPublisher:Informa UK Limited Fitzer, Susan C; Bin San Chan, Vera; Meng, Yuan; Chandra Rajan, Kanmani; Suzuki, Michio; Not, Christelle; Toyofuku, Takashi; Falkenberg, Laura; Byrne, Maria; Harvey, Ben P; de Wit, Pierre; Cusack, Maggie; Gao, K S; Taylor, Paul; Dupont, Sam; Hall-Spencer, Jason M; Thiyagarajan, V;handle: 1893/30038
Ocean acidification (OA) is the decline in seawater pH and saturation levels of calcium carbonate (CaCO3) minerals that has led to concerns for calcifying organisms such as corals, oysters and mussels because of the adverse effects of OA on their biomineralisation, shells and skeletons. A range of cellular biology, geochemistry and materials science approaches have been used to explore biomineralisation. These techniques have revealed that responses to seawater acidification can be highly variable among species, yet the underlying mechanisms remain largely unresolved. To assess the impacts of global OA, researchers will need to apply a range of tools developed across disciplines, many of which are emerging and have not yet been used in this context. This review outlines techniques that could be applied to study OA-induced alterations in the mechanisms of biomineralisation and their ultimate effects on shells and skeletons. We illustrate how to characterise, quantify and monitor the process of biomineralisation in the context of global climate change and OA. We highlight the basic principles, as well as the advantages and disadvantages, of established, emerging and future techniques for OA researchers. A combination of these techniques will enable a holistic approach and better understanding of the potential impact of OA on biomineralisation and its consequences for marine calcifiers and associated ecosystems.
http://dspace.stir.a... arrow_drop_down https://doi.org/10.1201/978042...Part of book or chapter of book . 2019 . Peer-reviewedData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1201/9780429026379-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert http://dspace.stir.a... arrow_drop_down https://doi.org/10.1201/978042...Part of book or chapter of book . 2019 . Peer-reviewedData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryPart of book or chapter of book . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1201/9780429026379-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, France, SpainPublisher:Wiley Funded by:EC | MEDSEAEC| MEDSEAAuthors: Jason M. Hall-Spencer; Jason M. Hall-Spencer; Lucia Porzio; Paulo Antunes Horta; +5 AuthorsJason M. Hall-Spencer; Jason M. Hall-Spencer; Lucia Porzio; Paulo Antunes Horta; Line Le Gall; Viviana Peña; Marco Milazzo; Sylvain Agostini; Ben P. Harvey;AbstractCalcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance. We found a decrease in the taxonomic diversity of coralline algae with increasing acidification with more than half of the species lost in high pCO2 conditions. Sporolithales is the oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low Mg calcite deposition; it is less diverse today and was the most sensitive to ocean acidification. Corallinales were also reduced in cover and diversity but several species survived at high pCO2; it is the most recent order of coralline algae and originated when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp decline in cover and thickness of coralline algal carbonate deposits at high pCO2 highlighted their lower fitness in response to ocean acidification. Reductions in CO2 emissions are needed to limit the risk of losing coralline algal diversity.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2021Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2021Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Australia, Australia, United KingdomPublisher:Wiley Funded by:EC | GLOBEFEC| GLOBEFAuthors: Philippa Moore; Philippa Moore; Dylan Gwynn-Jones; Ben P. Harvey;AbstractOcean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta‐analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life‐history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single‐stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticle . 2013License: CC BYFull-Text: https://eprints.ncl.ac.uk/271997Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/272001Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2013License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2013/698Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 419 citations 419 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticle . 2013License: CC BYFull-Text: https://eprints.ncl.ac.uk/271997Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/272001Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2013License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworks2013/698Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset , Other dataset type 2017Publisher:PANGAEA Authors: Harvey, Ben P; Moore, Pippa J;While there is increasing evidence for the impacts of climate change at the individual level, much less is known about how species' likely idiosyncratic responses may alter ecological interactions. Here, we demonstrate that ocean acidification and warming not only directly alter species' (individual) physiological performance, but also their predator-prey dynamics. Our results demonstrate that tissue production (used as a proxy for prey quality) in the barnacle Semibalanus balanoides was reduced under scenarios of future climate change, and hence their ability to support energy acquisition for dogwhelk Nucella lapillus through food provision was diminished. However, rather than increasing their feeding rates as a compensatory mechanism, consumption rates of N. lapillus were reduced to the point that they exhibited starvation (a loss of somatic tissue), despite prey resources remaining abundant. The resilience of any marine organism to stressors is fundamentally linked to their ability to obtain and assimilate energy. Therefore, our findings suggest that the cost of living under future climate change may surpass the energy intake from consumption rates, which is likely exacerbated through the bottom-up effects of reduced prey quality. If, as our results suggest, changes in trophic transfer of energy are more common in a warmer, high CO2 world, such alterations to the predator-prey dynamic may have negative consequences for the acquisition of energy in the predator and result in energetic trade-offs. Given the importance of predator-prey interactions in structuring marine communities, future climate change is likely to have major consequences for community composition and the structure and function of ecosystems. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2017-11-21. Supplement to: Harvey, Ben P; Moore, Pippa J (2017): Ocean warming and acidification prevent compensatory response in a predator to reduced prey quality. Marine Ecology Progress Series, 563, 111-122
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2017License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.883315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2017License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.883315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Agostini, Sylvain; Houlbrèque, Fanny; Biscéré, Tom; Harvey, Ben P.; Heitzman, Joshua M.; Takimoto, Risa; Yamazaki, Wataru; Milazzo, Marco; Rodolfo-Metalpa, Riccardo;Datasets associated with Agostini, S., Houlbreque, F., Biscéré, T., Harvey, B. P., Heitzman, J. M., Takimoto, R., et al. (2020). Greater mitochondrial energy production provides resistance to ocean acidification in ‘winning’ hermatypic corals. Front. Mar. Sci. 7. doi:10.3389/fmars.2020.600836.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4415126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4415126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Agostini, Sylvain; Harvey, Ben P; Milazzo, Marco; Wada, Shigeki; Kon, Koetsu; Floc'h, Nicolas; Komatsu, K; Kuroyama, Mayumi; Hall-Spencer, Jason M;Ocean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral-dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral-dominated ecosystems. We show that increased herbivory by warm-water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf-dominated ecosystems, rather than the complex coral-dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-05-11.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.944056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.944056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Jason M. Hall-Spencer; Jason M. Hall-Spencer; Shigeki Wada; Mayumi Kuroyama; Nicolas Floc’h; Ben P. Harvey; Marco Milazzo; Kosei Komatsu; Sylvain Agostini; Koetsu Kon;AbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Ben P. Harvey; Katie E. Marshall; Christopher D.G. Harley; Bayden D. Russell;pmid: 34593256
Marine heatwaves (MHWs), discrete but prolonged periods of anomalously warm seawater, can fundamentally restructure marine communities and ecosystems. Although our understanding of these events has improved in recent years, key knowledge gaps hinder our ability to predict how MHWs will affect patterns of biodiversity. Here, we outline a functional trait approach that enables a better understanding of which species and communities will be most vulnerable to MHWs, and how the distribution of species and composition of communities are likely to shift through time. Our perspective allows progress toward unifying extreme events and longer term environmental trends as co-drivers of ecological change, with the incorporation of species traits into our predictions allowing for a greater capacity to make management decisions.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.09.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2021.09.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu