- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Australia, United StatesPublisher:Wiley Funded by:UKRI | Sequencing the transcript...UKRI| Sequencing the transcriptome of Kalanchoe fedtschenkoi: a model for Crassulacean acid metabolism embryogenic plantlet formation and the SaxifragalesAuthors: Sung Don Lim; Sujithkumar Surendran Nair; Joseph A. M. Holtum; J. Andrew C. Smith; +50 AuthorsSung Don Lim; Sujithkumar Surendran Nair; Joseph A. M. Holtum; J. Andrew C. Smith; Karen Schlauch; Jerry Jenkins; Cristóbal N. Aguilar; Klaus Winter; Howard Griffiths; Paul E. Abraham; Jeremy Schmutz; Jeremy Schmutz; Henrique Cestari De Paoli; Anne M. Borland; Anne M. Borland; Rebecca L. Albion; David J. Weston; Jade Waller; Won Cheol Yim; Katia Silvera; Jesse A. Mayer; Juli Petereit; Travis M. Garcia; J. Ryan Stewart; Jungmin Ha; Priya Ranjan; Ray Ming; Ray Ming; Hengfu Yin; Jack Davies; John C. Cushman; Luciano Freschi; Kaitlin J. Palla; Robert L. Hettich; Bernard W. M. Wone; Gerald A. Tuskan; Erin Casey; Phaitun Bupphada; James Hartwell; Stan D. Wullschleger; Casandra Reyes-García; Nick A. Owen; José Luis Andrade; Louisa V. Dever; Johan Ceusters; Erika J. Edwards; Susanna F. Boxall; Robert W. Cottingham; Hao-Bo Guo; Xiaohan Yang; Sarah Davis; Juan D. Beltrán; Nirja Kadu; Rowan F. Sage;SummaryCrassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water‐use efficiency (WUE), and enables CAM plants to inhabit water‐limited environments such as semi‐arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi‐arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management.
CORE arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4xd4t210Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 201 citations 201 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4xd4t210Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Australia, United StatesPublisher:Wiley Funded by:UKRI | Sequencing the transcript...UKRI| Sequencing the transcriptome of Kalanchoe fedtschenkoi: a model for Crassulacean acid metabolism embryogenic plantlet formation and the SaxifragalesAuthors: Sung Don Lim; Sujithkumar Surendran Nair; Joseph A. M. Holtum; J. Andrew C. Smith; +50 AuthorsSung Don Lim; Sujithkumar Surendran Nair; Joseph A. M. Holtum; J. Andrew C. Smith; Karen Schlauch; Jerry Jenkins; Cristóbal N. Aguilar; Klaus Winter; Howard Griffiths; Paul E. Abraham; Jeremy Schmutz; Jeremy Schmutz; Henrique Cestari De Paoli; Anne M. Borland; Anne M. Borland; Rebecca L. Albion; David J. Weston; Jade Waller; Won Cheol Yim; Katia Silvera; Jesse A. Mayer; Juli Petereit; Travis M. Garcia; J. Ryan Stewart; Jungmin Ha; Priya Ranjan; Ray Ming; Ray Ming; Hengfu Yin; Jack Davies; John C. Cushman; Luciano Freschi; Kaitlin J. Palla; Robert L. Hettich; Bernard W. M. Wone; Gerald A. Tuskan; Erin Casey; Phaitun Bupphada; James Hartwell; Stan D. Wullschleger; Casandra Reyes-García; Nick A. Owen; José Luis Andrade; Louisa V. Dever; Johan Ceusters; Erika J. Edwards; Susanna F. Boxall; Robert W. Cottingham; Hao-Bo Guo; Xiaohan Yang; Sarah Davis; Juan D. Beltrán; Nirja Kadu; Rowan F. Sage;SummaryCrassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water‐use efficiency (WUE), and enables CAM plants to inhabit water‐limited environments such as semi‐arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi‐arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management.
CORE arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4xd4t210Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 201 citations 201 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4xd4t210Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ArgentinaPublisher:Elsevier BV Authors: Julio A. Salas-Rabaza; José Luis Andrade; Roberth Us-Santamaría; Pablo Morales-Rico; +5 AuthorsJulio A. Salas-Rabaza; José Luis Andrade; Roberth Us-Santamaría; Pablo Morales-Rico; Gisela Mayora; Francisco Javier Aguirre; Vicente Fecci-Machuca; Eugenia M. Gade-Palma; Frederic Thalasso;Accurate measurements of methane (CH4) and carbon dioxide (CO2) fluxes from tree stems are important for understanding greenhouse gas emissions. Closed chamber methods are commonly employed for this purpose; however, leaks between the chamber and the atmosphere as well as gas accumulation, known as the concentration buildup effect, can impact flux measurements significantly. In this study, we investigated the impacts of concentration buildup and leaks on semi-rigid closed chamber methods. Field measurements were conducted on six tree species, including three species from a Mexican mangrove ecosystem and three species from a Magellanic sub-Antarctic forest. Systematic observations revealed significant leak flow rates, ranging from 0.00 to 465 L h-1, with a median value of 1.25 ± 75.67 L h-1. We tested the efficacy of using cement to reduce leaks, achieving a leak flow rate reduction of 46-98 % without complete elimination. Our study also demonstrates a clear and substantial impact of concentration buildup on CH4 flux measurements, while CO2 flux measurements were relatively less affected across all tree species studied. Our results show that the combined effects of leaks and concentration buildup can lead to an underestimation of CH4 emissions by an average of 40 ± 20 % and CO2 emissions by 22 ± 22 %, depending on the bark roughness. Based on these findings, we recall a straightforward yet effective method to minimize experimental errors associated with these phenomena, previously established, and reiterated in the current context, for calculating emissions that considers effects of leaks and concentration buildup, while eliminating the need for separate determinations of these phenomena. Overall, the results, combined with a literature review, suggest that our current estimates of GHG flux from tree stems are currently underestimated.
CONICET Digital arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4500472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert CONICET Digital arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4500472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ArgentinaPublisher:Elsevier BV Authors: Julio A. Salas-Rabaza; José Luis Andrade; Roberth Us-Santamaría; Pablo Morales-Rico; +5 AuthorsJulio A. Salas-Rabaza; José Luis Andrade; Roberth Us-Santamaría; Pablo Morales-Rico; Gisela Mayora; Francisco Javier Aguirre; Vicente Fecci-Machuca; Eugenia M. Gade-Palma; Frederic Thalasso;Accurate measurements of methane (CH4) and carbon dioxide (CO2) fluxes from tree stems are important for understanding greenhouse gas emissions. Closed chamber methods are commonly employed for this purpose; however, leaks between the chamber and the atmosphere as well as gas accumulation, known as the concentration buildup effect, can impact flux measurements significantly. In this study, we investigated the impacts of concentration buildup and leaks on semi-rigid closed chamber methods. Field measurements were conducted on six tree species, including three species from a Mexican mangrove ecosystem and three species from a Magellanic sub-Antarctic forest. Systematic observations revealed significant leak flow rates, ranging from 0.00 to 465 L h-1, with a median value of 1.25 ± 75.67 L h-1. We tested the efficacy of using cement to reduce leaks, achieving a leak flow rate reduction of 46-98 % without complete elimination. Our study also demonstrates a clear and substantial impact of concentration buildup on CH4 flux measurements, while CO2 flux measurements were relatively less affected across all tree species studied. Our results show that the combined effects of leaks and concentration buildup can lead to an underestimation of CH4 emissions by an average of 40 ± 20 % and CO2 emissions by 22 ± 22 %, depending on the bark roughness. Based on these findings, we recall a straightforward yet effective method to minimize experimental errors associated with these phenomena, previously established, and reiterated in the current context, for calculating emissions that considers effects of leaks and concentration buildup, while eliminating the need for separate determinations of these phenomena. Overall, the results, combined with a literature review, suggest that our current estimates of GHG flux from tree stems are currently underestimated.
CONICET Digital arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4500472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert CONICET Digital arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4500472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, United States, United Kingdom, Netherlands, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Ecosystem process..., NSF | COLLABORATIVE RESEARCH: M..., NSF | Controls on the Storage a... +8 projectsNSF| CAREER: Ecosystem processes in regenerating tropical dry forests: linking plant functional traits, stands, and landscapes ,NSF| COLLABORATIVE RESEARCH: MODELING SUCCESSIONAL VEGETATION DYNAMICS IN WET TROPICAL FORESTS AT MULTIPLE SCALES: INTEGRATING NEIGHBORHOOD EFFECTS, FUNCTIONAL TRAITS, AND PHYLOGENY ,NSF| Controls on the Storage and Loss of Soil Organic Carbon with Reforestation of Abandoned Pastures ,NSF| CNH-RCN: Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSERC ,NSF| Environmental Heterogeneity and Woody Species Diversity in Low-elevation Tropical Secondary Forests ,NSF| 3rd Collaborative Research Network Program (CRN3) ,NSF| Collaborative Research: Causes and Consequences of Tree Colonization Patterns in Wet Tropical Forests ,NSF| CAREER: Land Use and Environmental Controls on Soil Carbon in Human-Dominated Tropical LandscapesLourens Poorter; Edwin Lebrija-Trejos; Ricardo Gomes César; Whendee L. Silver; Gabriel Dalla Colletta; Erika Marin-Spiotta; André Braga Junqueira; André Braga Junqueira; André Braga Junqueira; Susan G. Letcher; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Hans van der Wal; María Uriarte; T. Mitchell Aide; Janet I. Sprent; Arturo Sanchez-Azofeifa; G. Wilson Fernandes; Saara J. DeWalt; Daniel Piotto; Frans Bongers; Susana Ochoa-Gaona; Mira Garner; Patricia Balvanera; Rebecca J. Cole; Casandra Reyes-García; Edith Orihuela-Belmonte; Eduardo A. Pérez-García; Jorge Rodríguez-Velázquez; Justin M. Becknell; Duncan N. L. Menge; José Luis Andrade; Robert Muscarella; Jefferson S. Hall; Benjamin W. Sullivan; Juan Manuel Dupuy; Mário M. Espírito Santo; Peter B. Reich; Peter B. Reich; Yule Roberta Ferreira Nunes; Francisco Mora; Miguel Martínez-Ramos; Arlete Silva de Almeida; Ben de Jong; Sandra M. Durán; Pedro H. S. Brancalion; Marielos Peña-Claros; I. Eunice Romero-Pérez; Lucía Sanaphre-Villanueva; Robin L. Chazdon; Michiel van Breugel; Michiel van Breugel; Jess K. Zimmerman; Maga Gei; Deborah K. Kennard; Nathan G. Swenson; Vanessa Granda Moser; José Luis Hernández-Stefanoni; George A. L. Cabral; Daisy H. Dent; Daisy H. Dent; Vanessa de Souza Moreno; Julie S. Denslow; Rodrigo Muñoz; Jennifer S. Powers; Jennifer S. Powers; Bryan Finegan; Jorge A. Meave; Madelon Lohbeck; Madelon Lohbeck; Hans F. M. Vester; Jarcilene S. Almeida-Cortez; Ima Célia Guimarães Vieira; Naomi B. Schwartz; Maria das Dores Magalhães Veloso; Rebecca Ostertag;The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, United States, United Kingdom, Netherlands, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Ecosystem process..., NSF | COLLABORATIVE RESEARCH: M..., NSF | Controls on the Storage a... +8 projectsNSF| CAREER: Ecosystem processes in regenerating tropical dry forests: linking plant functional traits, stands, and landscapes ,NSF| COLLABORATIVE RESEARCH: MODELING SUCCESSIONAL VEGETATION DYNAMICS IN WET TROPICAL FORESTS AT MULTIPLE SCALES: INTEGRATING NEIGHBORHOOD EFFECTS, FUNCTIONAL TRAITS, AND PHYLOGENY ,NSF| Controls on the Storage and Loss of Soil Organic Carbon with Reforestation of Abandoned Pastures ,NSF| CNH-RCN: Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSERC ,NSF| Environmental Heterogeneity and Woody Species Diversity in Low-elevation Tropical Secondary Forests ,NSF| 3rd Collaborative Research Network Program (CRN3) ,NSF| Collaborative Research: Causes and Consequences of Tree Colonization Patterns in Wet Tropical Forests ,NSF| CAREER: Land Use and Environmental Controls on Soil Carbon in Human-Dominated Tropical LandscapesLourens Poorter; Edwin Lebrija-Trejos; Ricardo Gomes César; Whendee L. Silver; Gabriel Dalla Colletta; Erika Marin-Spiotta; André Braga Junqueira; André Braga Junqueira; André Braga Junqueira; Susan G. Letcher; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Hans van der Wal; María Uriarte; T. Mitchell Aide; Janet I. Sprent; Arturo Sanchez-Azofeifa; G. Wilson Fernandes; Saara J. DeWalt; Daniel Piotto; Frans Bongers; Susana Ochoa-Gaona; Mira Garner; Patricia Balvanera; Rebecca J. Cole; Casandra Reyes-García; Edith Orihuela-Belmonte; Eduardo A. Pérez-García; Jorge Rodríguez-Velázquez; Justin M. Becknell; Duncan N. L. Menge; José Luis Andrade; Robert Muscarella; Jefferson S. Hall; Benjamin W. Sullivan; Juan Manuel Dupuy; Mário M. Espírito Santo; Peter B. Reich; Peter B. Reich; Yule Roberta Ferreira Nunes; Francisco Mora; Miguel Martínez-Ramos; Arlete Silva de Almeida; Ben de Jong; Sandra M. Durán; Pedro H. S. Brancalion; Marielos Peña-Claros; I. Eunice Romero-Pérez; Lucía Sanaphre-Villanueva; Robin L. Chazdon; Michiel van Breugel; Michiel van Breugel; Jess K. Zimmerman; Maga Gei; Deborah K. Kennard; Nathan G. Swenson; Vanessa Granda Moser; José Luis Hernández-Stefanoni; George A. L. Cabral; Daisy H. Dent; Daisy H. Dent; Vanessa de Souza Moreno; Julie S. Denslow; Rodrigo Muñoz; Jennifer S. Powers; Jennifer S. Powers; Bryan Finegan; Jorge A. Meave; Madelon Lohbeck; Madelon Lohbeck; Hans F. M. Vester; Jarcilene S. Almeida-Cortez; Ima Célia Guimarães Vieira; Naomi B. Schwartz; Maria das Dores Magalhães Veloso; Rebecca Ostertag;The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Manuela Tamayo-Chim; Agatha T Rosado-Calderón; Ivón M Ramírez-Morillo; Oscar Briones; +3 AuthorsManuela Tamayo-Chim; Agatha T Rosado-Calderón; Ivón M Ramírez-Morillo; Oscar Briones; Casandra Reyes-García; José Luis Andrade; Erick de la Barrera;doi: 10.1111/ppl.12805
pmid: 30136347
Climate change is expected to increase the frequency of extreme climatic events, yet few studies have addressed the capacity of plant species to deal with such events. Species that are widespread are predicted to be highly plastic and able to acclimate to highly changing conditions. To study the plasticity in physiological responses of the widely distributed epiphyte Tillandsia utriculata, we transplanted individuals from a coastal scrub and broadleaf evergreen forest to a similar coastal scrub site and forest. After a 45‐day acclimation, the plants were moved to a semi‐controlled greenhouse at each site, and then subjected to a 20‐day drought. Physiological variables were measured during the acclimation and the drought. The individuals of scrub and forest populations had similar relative water content and carbon assimilation in the contrasting conditions of the two transplantation sites despite the high discrepancy between the environments at their original site. Electron transport rates were higher in individuals from the scrub population. Electron transport rates were also higher than estimated from carbon assimilation, suggesting that photorespiration was present. The individuals of the coastal scrub population had a higher capacity to dissipate excess energy this way. The relative distance index of plasticity was high overall, indicating that some traits are highly plastic (titratable acidity, carbon assimilation) in order to maintain the stability of others (maximum quantum yield Fv/Fm and relative water content). We conclude that T. utriculata is a highly plastic species with a high capacity to tolerate extreme environmental changes over a short time.
Physiologia Plantaru... arrow_drop_down Physiologia PlantarumArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Physiologia Plantaru... arrow_drop_down Physiologia PlantarumArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Manuela Tamayo-Chim; Agatha T Rosado-Calderón; Ivón M Ramírez-Morillo; Oscar Briones; +3 AuthorsManuela Tamayo-Chim; Agatha T Rosado-Calderón; Ivón M Ramírez-Morillo; Oscar Briones; Casandra Reyes-García; José Luis Andrade; Erick de la Barrera;doi: 10.1111/ppl.12805
pmid: 30136347
Climate change is expected to increase the frequency of extreme climatic events, yet few studies have addressed the capacity of plant species to deal with such events. Species that are widespread are predicted to be highly plastic and able to acclimate to highly changing conditions. To study the plasticity in physiological responses of the widely distributed epiphyte Tillandsia utriculata, we transplanted individuals from a coastal scrub and broadleaf evergreen forest to a similar coastal scrub site and forest. After a 45‐day acclimation, the plants were moved to a semi‐controlled greenhouse at each site, and then subjected to a 20‐day drought. Physiological variables were measured during the acclimation and the drought. The individuals of scrub and forest populations had similar relative water content and carbon assimilation in the contrasting conditions of the two transplantation sites despite the high discrepancy between the environments at their original site. Electron transport rates were higher in individuals from the scrub population. Electron transport rates were also higher than estimated from carbon assimilation, suggesting that photorespiration was present. The individuals of the coastal scrub population had a higher capacity to dissipate excess energy this way. The relative distance index of plasticity was high overall, indicating that some traits are highly plastic (titratable acidity, carbon assimilation) in order to maintain the stability of others (maximum quantum yield Fv/Fm and relative water content). We conclude that T. utriculata is a highly plastic species with a high capacity to tolerate extreme environmental changes over a short time.
Physiologia Plantaru... arrow_drop_down Physiologia PlantarumArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Physiologia Plantaru... arrow_drop_down Physiologia PlantarumArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Australia, United StatesPublisher:Wiley Funded by:UKRI | Sequencing the transcript...UKRI| Sequencing the transcriptome of Kalanchoe fedtschenkoi: a model for Crassulacean acid metabolism embryogenic plantlet formation and the SaxifragalesAuthors: Sung Don Lim; Sujithkumar Surendran Nair; Joseph A. M. Holtum; J. Andrew C. Smith; +50 AuthorsSung Don Lim; Sujithkumar Surendran Nair; Joseph A. M. Holtum; J. Andrew C. Smith; Karen Schlauch; Jerry Jenkins; Cristóbal N. Aguilar; Klaus Winter; Howard Griffiths; Paul E. Abraham; Jeremy Schmutz; Jeremy Schmutz; Henrique Cestari De Paoli; Anne M. Borland; Anne M. Borland; Rebecca L. Albion; David J. Weston; Jade Waller; Won Cheol Yim; Katia Silvera; Jesse A. Mayer; Juli Petereit; Travis M. Garcia; J. Ryan Stewart; Jungmin Ha; Priya Ranjan; Ray Ming; Ray Ming; Hengfu Yin; Jack Davies; John C. Cushman; Luciano Freschi; Kaitlin J. Palla; Robert L. Hettich; Bernard W. M. Wone; Gerald A. Tuskan; Erin Casey; Phaitun Bupphada; James Hartwell; Stan D. Wullschleger; Casandra Reyes-García; Nick A. Owen; José Luis Andrade; Louisa V. Dever; Johan Ceusters; Erika J. Edwards; Susanna F. Boxall; Robert W. Cottingham; Hao-Bo Guo; Xiaohan Yang; Sarah Davis; Juan D. Beltrán; Nirja Kadu; Rowan F. Sage;SummaryCrassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water‐use efficiency (WUE), and enables CAM plants to inhabit water‐limited environments such as semi‐arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi‐arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management.
CORE arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4xd4t210Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 201 citations 201 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4xd4t210Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Australia, United StatesPublisher:Wiley Funded by:UKRI | Sequencing the transcript...UKRI| Sequencing the transcriptome of Kalanchoe fedtschenkoi: a model for Crassulacean acid metabolism embryogenic plantlet formation and the SaxifragalesAuthors: Sung Don Lim; Sujithkumar Surendran Nair; Joseph A. M. Holtum; J. Andrew C. Smith; +50 AuthorsSung Don Lim; Sujithkumar Surendran Nair; Joseph A. M. Holtum; J. Andrew C. Smith; Karen Schlauch; Jerry Jenkins; Cristóbal N. Aguilar; Klaus Winter; Howard Griffiths; Paul E. Abraham; Jeremy Schmutz; Jeremy Schmutz; Henrique Cestari De Paoli; Anne M. Borland; Anne M. Borland; Rebecca L. Albion; David J. Weston; Jade Waller; Won Cheol Yim; Katia Silvera; Jesse A. Mayer; Juli Petereit; Travis M. Garcia; J. Ryan Stewart; Jungmin Ha; Priya Ranjan; Ray Ming; Ray Ming; Hengfu Yin; Jack Davies; John C. Cushman; Luciano Freschi; Kaitlin J. Palla; Robert L. Hettich; Bernard W. M. Wone; Gerald A. Tuskan; Erin Casey; Phaitun Bupphada; James Hartwell; Stan D. Wullschleger; Casandra Reyes-García; Nick A. Owen; José Luis Andrade; Louisa V. Dever; Johan Ceusters; Erika J. Edwards; Susanna F. Boxall; Robert W. Cottingham; Hao-Bo Guo; Xiaohan Yang; Sarah Davis; Juan D. Beltrán; Nirja Kadu; Rowan F. Sage;SummaryCrassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water‐use efficiency (WUE), and enables CAM plants to inhabit water‐limited environments such as semi‐arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi‐arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management.
CORE arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4xd4t210Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 201 citations 201 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/4xd4t210Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.13393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ArgentinaPublisher:Elsevier BV Authors: Julio A. Salas-Rabaza; José Luis Andrade; Roberth Us-Santamaría; Pablo Morales-Rico; +5 AuthorsJulio A. Salas-Rabaza; José Luis Andrade; Roberth Us-Santamaría; Pablo Morales-Rico; Gisela Mayora; Francisco Javier Aguirre; Vicente Fecci-Machuca; Eugenia M. Gade-Palma; Frederic Thalasso;Accurate measurements of methane (CH4) and carbon dioxide (CO2) fluxes from tree stems are important for understanding greenhouse gas emissions. Closed chamber methods are commonly employed for this purpose; however, leaks between the chamber and the atmosphere as well as gas accumulation, known as the concentration buildup effect, can impact flux measurements significantly. In this study, we investigated the impacts of concentration buildup and leaks on semi-rigid closed chamber methods. Field measurements were conducted on six tree species, including three species from a Mexican mangrove ecosystem and three species from a Magellanic sub-Antarctic forest. Systematic observations revealed significant leak flow rates, ranging from 0.00 to 465 L h-1, with a median value of 1.25 ± 75.67 L h-1. We tested the efficacy of using cement to reduce leaks, achieving a leak flow rate reduction of 46-98 % without complete elimination. Our study also demonstrates a clear and substantial impact of concentration buildup on CH4 flux measurements, while CO2 flux measurements were relatively less affected across all tree species studied. Our results show that the combined effects of leaks and concentration buildup can lead to an underestimation of CH4 emissions by an average of 40 ± 20 % and CO2 emissions by 22 ± 22 %, depending on the bark roughness. Based on these findings, we recall a straightforward yet effective method to minimize experimental errors associated with these phenomena, previously established, and reiterated in the current context, for calculating emissions that considers effects of leaks and concentration buildup, while eliminating the need for separate determinations of these phenomena. Overall, the results, combined with a literature review, suggest that our current estimates of GHG flux from tree stems are currently underestimated.
CONICET Digital arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4500472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert CONICET Digital arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4500472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ArgentinaPublisher:Elsevier BV Authors: Julio A. Salas-Rabaza; José Luis Andrade; Roberth Us-Santamaría; Pablo Morales-Rico; +5 AuthorsJulio A. Salas-Rabaza; José Luis Andrade; Roberth Us-Santamaría; Pablo Morales-Rico; Gisela Mayora; Francisco Javier Aguirre; Vicente Fecci-Machuca; Eugenia M. Gade-Palma; Frederic Thalasso;Accurate measurements of methane (CH4) and carbon dioxide (CO2) fluxes from tree stems are important for understanding greenhouse gas emissions. Closed chamber methods are commonly employed for this purpose; however, leaks between the chamber and the atmosphere as well as gas accumulation, known as the concentration buildup effect, can impact flux measurements significantly. In this study, we investigated the impacts of concentration buildup and leaks on semi-rigid closed chamber methods. Field measurements were conducted on six tree species, including three species from a Mexican mangrove ecosystem and three species from a Magellanic sub-Antarctic forest. Systematic observations revealed significant leak flow rates, ranging from 0.00 to 465 L h-1, with a median value of 1.25 ± 75.67 L h-1. We tested the efficacy of using cement to reduce leaks, achieving a leak flow rate reduction of 46-98 % without complete elimination. Our study also demonstrates a clear and substantial impact of concentration buildup on CH4 flux measurements, while CO2 flux measurements were relatively less affected across all tree species studied. Our results show that the combined effects of leaks and concentration buildup can lead to an underestimation of CH4 emissions by an average of 40 ± 20 % and CO2 emissions by 22 ± 22 %, depending on the bark roughness. Based on these findings, we recall a straightforward yet effective method to minimize experimental errors associated with these phenomena, previously established, and reiterated in the current context, for calculating emissions that considers effects of leaks and concentration buildup, while eliminating the need for separate determinations of these phenomena. Overall, the results, combined with a literature review, suggest that our current estimates of GHG flux from tree stems are currently underestimated.
CONICET Digital arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4500472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert CONICET Digital arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4500472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, United States, United Kingdom, Netherlands, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Ecosystem process..., NSF | COLLABORATIVE RESEARCH: M..., NSF | Controls on the Storage a... +8 projectsNSF| CAREER: Ecosystem processes in regenerating tropical dry forests: linking plant functional traits, stands, and landscapes ,NSF| COLLABORATIVE RESEARCH: MODELING SUCCESSIONAL VEGETATION DYNAMICS IN WET TROPICAL FORESTS AT MULTIPLE SCALES: INTEGRATING NEIGHBORHOOD EFFECTS, FUNCTIONAL TRAITS, AND PHYLOGENY ,NSF| Controls on the Storage and Loss of Soil Organic Carbon with Reforestation of Abandoned Pastures ,NSF| CNH-RCN: Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSERC ,NSF| Environmental Heterogeneity and Woody Species Diversity in Low-elevation Tropical Secondary Forests ,NSF| 3rd Collaborative Research Network Program (CRN3) ,NSF| Collaborative Research: Causes and Consequences of Tree Colonization Patterns in Wet Tropical Forests ,NSF| CAREER: Land Use and Environmental Controls on Soil Carbon in Human-Dominated Tropical LandscapesLourens Poorter; Edwin Lebrija-Trejos; Ricardo Gomes César; Whendee L. Silver; Gabriel Dalla Colletta; Erika Marin-Spiotta; André Braga Junqueira; André Braga Junqueira; André Braga Junqueira; Susan G. Letcher; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Hans van der Wal; María Uriarte; T. Mitchell Aide; Janet I. Sprent; Arturo Sanchez-Azofeifa; G. Wilson Fernandes; Saara J. DeWalt; Daniel Piotto; Frans Bongers; Susana Ochoa-Gaona; Mira Garner; Patricia Balvanera; Rebecca J. Cole; Casandra Reyes-García; Edith Orihuela-Belmonte; Eduardo A. Pérez-García; Jorge Rodríguez-Velázquez; Justin M. Becknell; Duncan N. L. Menge; José Luis Andrade; Robert Muscarella; Jefferson S. Hall; Benjamin W. Sullivan; Juan Manuel Dupuy; Mário M. Espírito Santo; Peter B. Reich; Peter B. Reich; Yule Roberta Ferreira Nunes; Francisco Mora; Miguel Martínez-Ramos; Arlete Silva de Almeida; Ben de Jong; Sandra M. Durán; Pedro H. S. Brancalion; Marielos Peña-Claros; I. Eunice Romero-Pérez; Lucía Sanaphre-Villanueva; Robin L. Chazdon; Michiel van Breugel; Michiel van Breugel; Jess K. Zimmerman; Maga Gei; Deborah K. Kennard; Nathan G. Swenson; Vanessa Granda Moser; José Luis Hernández-Stefanoni; George A. L. Cabral; Daisy H. Dent; Daisy H. Dent; Vanessa de Souza Moreno; Julie S. Denslow; Rodrigo Muñoz; Jennifer S. Powers; Jennifer S. Powers; Bryan Finegan; Jorge A. Meave; Madelon Lohbeck; Madelon Lohbeck; Hans F. M. Vester; Jarcilene S. Almeida-Cortez; Ima Célia Guimarães Vieira; Naomi B. Schwartz; Maria das Dores Magalhães Veloso; Rebecca Ostertag;The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, United States, United Kingdom, Netherlands, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Ecosystem process..., NSF | COLLABORATIVE RESEARCH: M..., NSF | Controls on the Storage a... +8 projectsNSF| CAREER: Ecosystem processes in regenerating tropical dry forests: linking plant functional traits, stands, and landscapes ,NSF| COLLABORATIVE RESEARCH: MODELING SUCCESSIONAL VEGETATION DYNAMICS IN WET TROPICAL FORESTS AT MULTIPLE SCALES: INTEGRATING NEIGHBORHOOD EFFECTS, FUNCTIONAL TRAITS, AND PHYLOGENY ,NSF| Controls on the Storage and Loss of Soil Organic Carbon with Reforestation of Abandoned Pastures ,NSF| CNH-RCN: Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSERC ,NSF| Environmental Heterogeneity and Woody Species Diversity in Low-elevation Tropical Secondary Forests ,NSF| 3rd Collaborative Research Network Program (CRN3) ,NSF| Collaborative Research: Causes and Consequences of Tree Colonization Patterns in Wet Tropical Forests ,NSF| CAREER: Land Use and Environmental Controls on Soil Carbon in Human-Dominated Tropical LandscapesLourens Poorter; Edwin Lebrija-Trejos; Ricardo Gomes César; Whendee L. Silver; Gabriel Dalla Colletta; Erika Marin-Spiotta; André Braga Junqueira; André Braga Junqueira; André Braga Junqueira; Susan G. Letcher; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Hans van der Wal; María Uriarte; T. Mitchell Aide; Janet I. Sprent; Arturo Sanchez-Azofeifa; G. Wilson Fernandes; Saara J. DeWalt; Daniel Piotto; Frans Bongers; Susana Ochoa-Gaona; Mira Garner; Patricia Balvanera; Rebecca J. Cole; Casandra Reyes-García; Edith Orihuela-Belmonte; Eduardo A. Pérez-García; Jorge Rodríguez-Velázquez; Justin M. Becknell; Duncan N. L. Menge; José Luis Andrade; Robert Muscarella; Jefferson S. Hall; Benjamin W. Sullivan; Juan Manuel Dupuy; Mário M. Espírito Santo; Peter B. Reich; Peter B. Reich; Yule Roberta Ferreira Nunes; Francisco Mora; Miguel Martínez-Ramos; Arlete Silva de Almeida; Ben de Jong; Sandra M. Durán; Pedro H. S. Brancalion; Marielos Peña-Claros; I. Eunice Romero-Pérez; Lucía Sanaphre-Villanueva; Robin L. Chazdon; Michiel van Breugel; Michiel van Breugel; Jess K. Zimmerman; Maga Gei; Deborah K. Kennard; Nathan G. Swenson; Vanessa Granda Moser; José Luis Hernández-Stefanoni; George A. L. Cabral; Daisy H. Dent; Daisy H. Dent; Vanessa de Souza Moreno; Julie S. Denslow; Rodrigo Muñoz; Jennifer S. Powers; Jennifer S. Powers; Bryan Finegan; Jorge A. Meave; Madelon Lohbeck; Madelon Lohbeck; Hans F. M. Vester; Jarcilene S. Almeida-Cortez; Ima Célia Guimarães Vieira; Naomi B. Schwartz; Maria das Dores Magalhães Veloso; Rebecca Ostertag;The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N2, which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2qt956r8Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaNature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0559-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Manuela Tamayo-Chim; Agatha T Rosado-Calderón; Ivón M Ramírez-Morillo; Oscar Briones; +3 AuthorsManuela Tamayo-Chim; Agatha T Rosado-Calderón; Ivón M Ramírez-Morillo; Oscar Briones; Casandra Reyes-García; José Luis Andrade; Erick de la Barrera;doi: 10.1111/ppl.12805
pmid: 30136347
Climate change is expected to increase the frequency of extreme climatic events, yet few studies have addressed the capacity of plant species to deal with such events. Species that are widespread are predicted to be highly plastic and able to acclimate to highly changing conditions. To study the plasticity in physiological responses of the widely distributed epiphyte Tillandsia utriculata, we transplanted individuals from a coastal scrub and broadleaf evergreen forest to a similar coastal scrub site and forest. After a 45‐day acclimation, the plants were moved to a semi‐controlled greenhouse at each site, and then subjected to a 20‐day drought. Physiological variables were measured during the acclimation and the drought. The individuals of scrub and forest populations had similar relative water content and carbon assimilation in the contrasting conditions of the two transplantation sites despite the high discrepancy between the environments at their original site. Electron transport rates were higher in individuals from the scrub population. Electron transport rates were also higher than estimated from carbon assimilation, suggesting that photorespiration was present. The individuals of the coastal scrub population had a higher capacity to dissipate excess energy this way. The relative distance index of plasticity was high overall, indicating that some traits are highly plastic (titratable acidity, carbon assimilation) in order to maintain the stability of others (maximum quantum yield Fv/Fm and relative water content). We conclude that T. utriculata is a highly plastic species with a high capacity to tolerate extreme environmental changes over a short time.
Physiologia Plantaru... arrow_drop_down Physiologia PlantarumArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Physiologia Plantaru... arrow_drop_down Physiologia PlantarumArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Manuela Tamayo-Chim; Agatha T Rosado-Calderón; Ivón M Ramírez-Morillo; Oscar Briones; +3 AuthorsManuela Tamayo-Chim; Agatha T Rosado-Calderón; Ivón M Ramírez-Morillo; Oscar Briones; Casandra Reyes-García; José Luis Andrade; Erick de la Barrera;doi: 10.1111/ppl.12805
pmid: 30136347
Climate change is expected to increase the frequency of extreme climatic events, yet few studies have addressed the capacity of plant species to deal with such events. Species that are widespread are predicted to be highly plastic and able to acclimate to highly changing conditions. To study the plasticity in physiological responses of the widely distributed epiphyte Tillandsia utriculata, we transplanted individuals from a coastal scrub and broadleaf evergreen forest to a similar coastal scrub site and forest. After a 45‐day acclimation, the plants were moved to a semi‐controlled greenhouse at each site, and then subjected to a 20‐day drought. Physiological variables were measured during the acclimation and the drought. The individuals of scrub and forest populations had similar relative water content and carbon assimilation in the contrasting conditions of the two transplantation sites despite the high discrepancy between the environments at their original site. Electron transport rates were higher in individuals from the scrub population. Electron transport rates were also higher than estimated from carbon assimilation, suggesting that photorespiration was present. The individuals of the coastal scrub population had a higher capacity to dissipate excess energy this way. The relative distance index of plasticity was high overall, indicating that some traits are highly plastic (titratable acidity, carbon assimilation) in order to maintain the stability of others (maximum quantum yield Fv/Fm and relative water content). We conclude that T. utriculata is a highly plastic species with a high capacity to tolerate extreme environmental changes over a short time.
Physiologia Plantaru... arrow_drop_down Physiologia PlantarumArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Physiologia Plantaru... arrow_drop_down Physiologia PlantarumArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu