- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 09 Jul 2020 Norway, Australia, Czech Republic, Switzerland, Australia, Australia, Denmark, Australia, Italy, Australia, Czech Republic, Germany, Netherlands, Germany, Australia, Germany, Sweden, Russian Federation, Australia, Australia, Italy, Italy, France, ItalyPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAndreas Ibrom; Bruno De Cinti; Jean Marc Ourcival; Vincenzo Magliulo; Onil Bergeron; M. Altaf Arain; Andrew Feitz; Zulia Mayari Sanchez-Mejia; Christof Ammann; Yann Nouvellon; Siyan Ma; Brian D. Amiro; Kim Pilegaard; Eddy Moors; Michele Tomassucci; Asko Noormets; Shawn Urbanski; Damiano Gianelle; Anatoly A. Gitelson; E. Canfora; You Wei Cheah; Ko van Huissteden; Shicheng Jiang; Hans Peter Schmid; Albin Hammerle; Brent E. Ewers; Virginie Moreaux; Housen Chu; Anne Griebel; Timothy J. Arkebauer; Peter Cale; Barbara Marcolla; Alan G. Barr; Alan G. Barr; Scott D. Miller; Lutz Merbold; Ivan Schroder; Joseph Verfaillie; Stefan K. Arndt; Scott R. Saleska; Nicolas Delpierre; Catharine van Ingen; Christine Moureaux; Annalea Lohila; Annalea Lohila; Gabriela Posse; Bernard Heinesch; Pierpaolo Duce; Raimundo Cosme de Oliveira; Kenneth J. Davis; Markus Hehn; Torben R. Christensen; Tilden P. Meyers; Werner L. Kutsch; Lindsay B. Hutley; Üllar Rannik; W.W.P. Jans; Riccardo Valentini; Myroslava Khomik; Myroslava Khomik; Pierre Cellier; Ayumi Kotani; Xiaoqin Dai; Marta Galvagno; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Eric Dufrêne; Marius Schmidt; Birger Ulf Hansen; Alessio Collalti; Alessio Collalti; Ivan Shironya; Christian Brümmer; Russell L. Scott; Serge Rambal; Jonas Ardö; Natalia Restrepo-Coupe; Donatella Zona; Elizabeth A. Walter-Shea; Russell K. Monson; Silvano Fares; Sean P. Burns; Sean P. Burns; Mauro Cavagna; Guoyi Zhou; Suzanne M. Prober; Juha Pekka Tuovinen; Georgia R. Koerber; Yuelin Li; Alexander Knohl; Mikhail Mastepanov; Mikhail Mastepanov; Yanhong Tang; Johan Neirynck; Matthew Northwood; Pauline Buysse; Thomas Grünwald; Sabina Dore; N. Pirk; N. Pirk; Hiroki Ikawa; Craig Macfarlane; Jean-Marc Limousin; Carlos Marcelo Di Bella; Leiming Zhang; Juha Hatakka; Margaret S. Torn; Mika Aurela; Bert Gielen; Jiquan Chen; Regine Maier; Karl Schneider; Christian Wille; Nina Buchmann; Daniel Berveiller; Peter D. Blanken; Wayne S. Meyer; Dennis D. Baldocchi; Benjamin Loubet; Giovanni Manca; Hatim Abdalla M. ElKhidir; James Cleverly; Harry McCaughey; Agnès de Grandcourt; Matthias Peichl; Adam J. Liska; Jonathan E. Thom; Christian Bernhofer; Jean Marc Bonnefond; Alexander Graf; Roser Matamala; M. Goeckede; Marian Pavelka; Hank A. Margolis; Eugénie Paul-Limoges; Andrew S. Kowalski; Taro Nakai; Taro Nakai; Marcelo D. Nosetto; Tomomichi Kato; Ray Leuning; Beniamino Gioli; Marc Aubinet; Tuomas Laurila; Andrej Varlagin; Ignacio Goded; David R. Bowling; Nigel J. Tapper; Ana López-Ballesteros; Denis Loustau; Iris Feigenwinter; Uta Moderow; Edoardo Cremonese; Gianluca Filippa; Domenico Vitale; Abdelrahman Elbashandy; Gilberto Pastorello; Ettore D'Andrea; Gil Bohrer; Thomas L. Powell; Serena Marras; Daniela Famulari; Christopher M. Gough; Enrique P. Sánchez-Cañete; Satoru Takanashi; Michael J. Liddell; Jason Brodeur; Marc Fischer; Zoran Nesic; William J. Massman; Janina Klatt; Samuli Launiainen; Anne De Ligne; Leonardo Montagnani; Sebastian Wolf; Rainer Steinbrecher; Yingnian Li; Donatella Spano; A. Ribeca; Rosvel Bracho; Walter C. Oechel; B.R. Reverter; Jiří Dušek; Sebastian Westermann; Rachhpal S. Jassal; Derek Eamus; Claudia Consalvo; Claudia Consalvo; Marty Humphrey; Timo Vesala; Cristina Poindexter; Jeffrey P. Walker; Humberto Ribeiro da Rocha; Paul V. Bolstad; Elise Pendall; Diego Polidori; Peter S. Curtis; Chad Hanson; Francisco Domingo; Jason Beringer;pmc: PMC7347557
AbstractThe FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 791 citations 791 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 23visibility views 23 download downloads 33 Powered bymore_vert CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: Pierpaolo Zara; Roberto Ferrara; Laura Sanna; Pierpaolo Duce;Within current initiatives dedicated to provide information on the status of greenhouse gases emissions, the town of Sassari represents a pilot site for estimating the net exchange of carbon dioxide (emissions and sinks) at municipal level in Sardinia (Italy). A spatial and temporal high resolution greenhouse gas emissions inventory for the urban area of Sassari is currently under construction in line with European and international standard protocols to establish a baseline for tracking emission trends. This paper presents the preliminary results of the development of a simplified local emissions inventory where estimates of the atmospheric emissions are collected and cataloged by type of greenhouse gases, productive activity and emissive source on annual basis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 ItalyPublisher:Springer Science and Business Media LLC Authors: Snyder, Richard L.; Spano, Donatella Emma Ignazia; Duce, Pierpaolo; Cesaraccio, Carla;pmid: 11769317
In an arid environment, the effect of evaporation on energy balance can affect air temperature recordings and greatly impact on degree-day calculations. This is an important consideration when choosing a site or climate data for phenological models. To our knowledge, there is no literature showing the effect of the underlying surface and its fetch around a weather station on degree-day accumulations. In this paper, we present data to show that this is a serious consideration, and it can lead to dubious models. Microscale measurements of temperature and energy balance are presented to explain why the differences occur. For example, the effect of fetch of irrigated grass and wetting of bare soil around a weather station on diurnal temperature are reported. A 43-day experiment showed that temperature measured on the upwind edge of an irrigated grass area averaged 4% higher than temperatures recorded 200 m inside the grass field. When the single-triangle method was used with a 10 degrees C threshold and starting on May 19, the station on the upwind edge recorded 900 degree-days on June 28, whereas the interior station recorded 900 degree-days on July 1. Clearly, a difference in fetch can lead to big errors for large degree-day accumulations. Immediately after wetting, the temperature over a wet soil surface was similar to that measured over grass. However, the temperature over the soil increased more than that over the grass as the soil surface dried. Therefore, the observed difference between temperatures measured over bare soil and those over grass increases with longer periods between wettings. In most arid locations, measuring temperature over irrigated grass gives a lower mean annual temperature, resulting in lower annual cumulative degree-day values. This was verified by comparing measurements over grass with those over bare soil at several weather stations in a range of climates. To eliminate the effect of rainfall frequency, using temperature data collected only over irrigated grass, is recommended for long-term assessment of climate change effects on degree-day accumulation. In high evaporative conditions, a fetch of at least 100 m of grass is recommended. Our results clearly indicate that weather stations sited over bare soil have consistently higher degree-day accumulations. Therefore, especially in arid environments, phenology models based on temperature collected over bare soil are not transferable to those based on temperature recorded over irrigated grass. At a minimum, all degree-day-based phenology models reported in the literature should clearly describe the weather station site.
UnissResearch arrow_drop_down International Journal of BiometeorologyArticle . 2001 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s004840100103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert UnissResearch arrow_drop_down International Journal of BiometeorologyArticle . 2001 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s004840100103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | CLIMSAVEEC| CLIMSAVEMichael J. Hayes; Pierpaolo Duce; Miroslav Trnka; Pierpaolo Zara; Martin Dubrovský; Mark Svoboda;Future climate conditions for the Mediterranean region based on an ensemble of 16 Global Climate Models are expressed and mapped using three approaches, giving special attention to the intermodel uncertainty. (1) The scenarios of mean seasonal temperature and precipitation agree with the projections published previously by other authors. The results show an increase in temperature in all seasons and for all parts of the Mediterranean with good intermodel agreement. Precipitation is projected to decrease in all parts and all seasons (most significantly in summer) except for the northernmost parts in winter. The intermodel agreement for the precipitation changes is lower than for temperature. (2) Changes in drought conditions are represented using the Palmer Drought Severity Index and its intermediate Z-index product. The results indicate a significant decrease in soil moisture in all seasons, with the most significant decrease occurring in summer. The displayed changes exhibit high intermodel agreement. (3) The climate change scenarios are defined in terms of the changes in parameters of the stochastic daily weather generator calibrated with the modeled daily data; the emphasis is put on the parameters, which affect the diurnal and interdiurnal variability in weather series. These scenarios indicate a trend toward more extreme weather in the Mediterranean. Temperature maxima will increase not only because of an overall rise in temperature means, but partly (in some areas) because of increases in temperature variability and daily temperature range. Increased mean daily precipitation sums on wet days occurring in some seasons, and some parts of the Mediterranean may imply higher daily precipitation extremes, and decreased probability of wet day occurrence will imply longer drought spells all across the Mediterranean.
CNR ExploRA arrow_drop_down Regional Environmental ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-013-0562-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 Powered bymore_vert CNR ExploRA arrow_drop_down Regional Environmental ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-013-0562-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999 ItalyPublisher:Springer Science and Business Media LLC Authors: Carla Cesaraccio; Pierpaolo Duce; Richard L. Snyder; Donatella Spano;The objectives of this paper are to: (1) present 10 years of phenological data for nine natural species growing in a Mediterranean-type climate, (2) present threshold temperatures that were derived for the computation of cumulative degree-days (CDD), and (3) evaluate the sensitivity of the nine natural species to weather variability. The study was conducted at the Phenological Research Garden of Oristano, Sardinia, Italy, during the period 1986–96. The observations were made on five typical Mediterranean species and four species that are typical of higher latitudes. The mean annual pattern of phenological events and the CDD from 1 January are given for each development stage. Temperature thresholds were evaluated by comparing the standard deviation about the mean number of days in the development period for each species. A good relationship between timing of phenophase occurrence and temperature was observed for the Mediterranean species, which were little affected by variations in rainfall. Phenological development of the nonnative species was affected by springtime rainfall
International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 1999 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s004840050095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 1999 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s004840050095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000 ItalyPublisher:Elsevier BV Authors: Spano D.; Snyder R.L; Duce P.; Paw U K.T;Fine-wire thermocouples were used to measure high-frequency temperature above and within canopies and structure functions were employed to determine temperature ramp characteristics, which were used in a fundamental conservation of energy equation to estimate sensible heat flux density. Earlier experiments over dense, tall, and short canopies demonstrated that the surface renewal method works, but requires a correction for uneven heating (e.g. D0.5 for tall, and D1.0 for short canopies). For sparse canopies, the calibration factor was unknown. Experiments were conducted in grape vineyards in California and Italy to determine whether the surface renewal method works in a sparse canopy and to determine if calibration is necessary. Surface renewal data were collected at several heights in the canopies and these were compared with simultaneous 1-D sonic anemometer measurements. The results indicated that the surface renewal technique provides good estimates of sensible heat flux density under all stability conditions without the need for calibration when the data are measured at about 90% of the canopy height. The values were generally within ca. 45 W m 2 of what was measured with a sonic anemometer. Separating the canopy into two layers provided even more accurate estimates of sensible heat flux density without the need for calibration. The best results were obtained when the lower layer was below the bottom of the vegetation and the upper layer included the vegetation. When combined with energy balance measurements of net radiation and soil heat flux density, using a thermocouple and the surface renewal technique offers an inexpensive alternative for estimating evapotranspiration with good accuracy. © 2000 Elsevier Science B.V. All rights reserved.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0168-1923(00)00167-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 97 citations 97 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0168-1923(00)00167-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Italy, Denmark, United Kingdom, SpainPublisher:Elsevier BV János Garadnai; Patricia Prieto; Josep Peñuelas; Pille Mänd; Marc Estiarte; Edit Kovács-Láng; Joke W. Westerveld; Albert Tietema; Claus Beier; Lea Hallik; Lea Hallik; Tibor Kalapos; Inger Kappel Schmidt; Tiit Nilson; Bridget A. Emmett; Olevi Kull; Pierpaolo Duce;handle: 11245/1.332983 , 10261/56370
The aim of this study was to evaluate the use of ground-based canopy reflectance measurements to detect changes in physiology and structure of vegetation in response to experimental warming and drought treatment at six European shrublands located along a North-South climatic gradient. We measured canopy reflectance, effective green leaf area index (green LAIe) and chlorophyll fluorescence of dominant species. The treatment effects on green LAIe varied among sites. We calculated three reflectance indices: photochemical reflectance index PRI [531 nm; 570 nm], normalized difference vegetation index NDVI680 [780 nm; 680 nm] using red spectral region, and NDVI570 [780 nm; 570 nm] using the same green spectral region as PRI. All three reflectance indices were significantly related to green LAIe and were able to detect changes in shrubland vegetation among treatments. In general warming treatment increased PRI and drought treatment reduced NDVI values. The significant treatment effect on photochemical efficiency of plants detected with PRI could not be detected by fluorescence measurements. However, we found canopy level measured PRI to be very sensitive to soil reflectance properties especially in vegetation areas with low green LAIe. As both soil reflectance and LAI varied between northern and southern sites it is problematic to draw universal conclusions of climate-derived changes in all vegetation types based merely on PRI measurements. We propose that canopy level PRI measurements can be more useful in areas of dense vegetation and dark soils.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARemote Sensing of EnvironmentArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRemote Sensing of EnvironmentArticle . 2010Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2009.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 17visibility views 17 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARemote Sensing of EnvironmentArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRemote Sensing of EnvironmentArticle . 2010Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2009.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Wiley Alberto Stanislao Atzori; Lukas Bayer; Giovanni Molle; Pasquale Arca; Antonello Franca; Marco Vannini; Gianluca Cocco; Domenico Usai; Pierpaolo Duce; Enrico Vagnoni;doi: 10.1002/ieam.4593
pmid: 35170206
AbstractThree million sheep raised on 10 000 active farms operating in traditional and innovative farming systems in Sardinia, Italy, account for 13% of sheep milk production in the European Union (EU). Almost all of the milk delivered is processed to sheep cheese and is destined for world trade. The Sardinian dairy sheep sector also emits approximately 1600 kt CO2eq/year, approximately 60% of regional livestock greenhouse gas (GHG), prompting the need for regional mitigation plans. The SheepToShip LIFE project (EU‐LIFE Climate Change Action 2014–2020) is a regional case study to test emission mitigation strategies. Based on the SheepToShip LIFE findings, this paper presents a systems perspective against the backdrop of the Sustainable Development Goals (SDGs) framework, with the aim of underlining system interlinkages between environmental, societal, and economic objectives. The project included (i) a life cycle thinking approach featuring environmental and socioeconomic traits of 18 sheep farms, (ii) on‐farm implementation and demonstration of eco‐innovative mitigation techniques indicating the most viable actions to reduce impact, (iii) focus groups discussing beliefs and reactions of the main stakeholders, and (iv) group model building producing a causal loop diagram from a systems thinking approach and exploring insights for regional policy‐making that aligns with the SDGs. Causal links connect public interventions and stakeholder interaction (SDG 17) to boost farm eco‐innovations (SDGs 9 and 8) and education and farmer training (SDG 4), and they foster efficient production (SDG 12) and high‐quality food provisioning (SDG 2). These benefits contribute to climate change mitigation (SDG 13), water quality (SDG 6), and farm ecosystem services (SDG 15). Integr Environ Assess Manag 2022;18:1187–1198. © 2022 SETAC
Integrated Environme... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIntegrated Environmental Assessment and ManagementArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.4593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Integrated Environme... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIntegrated Environmental Assessment and ManagementArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.4593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Italy, Denmark, ItalyPublisher:Elsevier BV Funded by:EC | INCREASEEC| INCREASEDan Bruhn; Dan Bruhn; Pierpaolo Zara; Pierpaolo Duce; Teis Nørgaard Mikkelsen; Sønnik Clausen; Giovanbattista de Dato; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier;Infrared reflective (IR) curtains have been widely used to obtain passive nighttime warming in field ecosystem experiments in order to simulate and study climate warming effects on ecosystems. For any field installation with IR-reflective curtains in an ecosystem the achieved heating effect depends on the heat gain determined by the stored energy during daytime (incoming radiation can be used as a proxy) the heat conservation determined by the IR-reflective effect of the curtains (cloudiness can be used as a proxy) and the heat loss determined by convectional heat loss (wind speed can be used as a proxy). In this study, we demonstrate some feasible avenues for improving the achieved temperature increase (?T) when using IR-reflective curtains at field scale by attacking the three main factors determining the efficiency of the curtains: (i) improving the long wave IR reflection by the curtains, (ii) insulating the curtains and (iii) reducing the lateral wind speed. We provide experimentally based replies to the major concerns raised in the literature about the passive nighttime warming method. We show (a) that using IR-reflective curtains during night does in fact not result in nighttime warming only as there is a small carryover (<0.5 °C) into the following daytime, and (b) although the employment of IR-reflective curtains at nighttime may alter the RH, it is a small change and not always in the same direction.
Agricultural and For... arrow_drop_down Online Research Database In TechnologyArticle . 2013Data sources: Online Research Database In TechnologyAgricultural and Forest MeteorologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2013.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Online Research Database In TechnologyArticle . 2013Data sources: Online Research Database In TechnologyAgricultural and Forest MeteorologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2013.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 ItalyPublisher:American Society of Civil Engineers (ASCE) Ventura, Francesca; Faber, Ben A.; Bali, Khaled M.; Snyder, Richard L.; Spano, Donatella Emma Ignazia; Duce, Pierpaolo; Schulbach, Kurt F.;Accurate estimates of crop evapotranspiration (ETc), that quantify the total water used by a crop, are needed to optimize irrigation scheduling for horticultural crops and to minimize water degradation. During early growth, accurate assessments of ETc are difficult in vegetable crops because of high soil evaporation due to frequent irrigation. A model to estimate ETc for vegetable crops, using only daily reference evapotranspiration data as an input parameter, was developed. It calculates crop transpiration and soil evaporation based on ground cover and daily radiation intercepted by the canopy. The model uses a two-stage soil evaporation method adapted to conditions of variable reference evapotranspiration. The model was evaluated against data using measurements from two seasons of lettuce crop, two tomato fields in the same season, and one season of broccoli crop production. Using all of the crop data, the root-mean-square error for measured versus modelled daily ETc was 0.72 mm/day, indicating that the model works well.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9437(2001)127:6(339)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9437(2001)127:6(339)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 09 Jul 2020 Norway, Australia, Czech Republic, Switzerland, Australia, Australia, Denmark, Australia, Italy, Australia, Czech Republic, Germany, Netherlands, Germany, Australia, Germany, Sweden, Russian Federation, Australia, Australia, Italy, Italy, France, ItalyPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAndreas Ibrom; Bruno De Cinti; Jean Marc Ourcival; Vincenzo Magliulo; Onil Bergeron; M. Altaf Arain; Andrew Feitz; Zulia Mayari Sanchez-Mejia; Christof Ammann; Yann Nouvellon; Siyan Ma; Brian D. Amiro; Kim Pilegaard; Eddy Moors; Michele Tomassucci; Asko Noormets; Shawn Urbanski; Damiano Gianelle; Anatoly A. Gitelson; E. Canfora; You Wei Cheah; Ko van Huissteden; Shicheng Jiang; Hans Peter Schmid; Albin Hammerle; Brent E. Ewers; Virginie Moreaux; Housen Chu; Anne Griebel; Timothy J. Arkebauer; Peter Cale; Barbara Marcolla; Alan G. Barr; Alan G. Barr; Scott D. Miller; Lutz Merbold; Ivan Schroder; Joseph Verfaillie; Stefan K. Arndt; Scott R. Saleska; Nicolas Delpierre; Catharine van Ingen; Christine Moureaux; Annalea Lohila; Annalea Lohila; Gabriela Posse; Bernard Heinesch; Pierpaolo Duce; Raimundo Cosme de Oliveira; Kenneth J. Davis; Markus Hehn; Torben R. Christensen; Tilden P. Meyers; Werner L. Kutsch; Lindsay B. Hutley; Üllar Rannik; W.W.P. Jans; Riccardo Valentini; Myroslava Khomik; Myroslava Khomik; Pierre Cellier; Ayumi Kotani; Xiaoqin Dai; Marta Galvagno; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Eric Dufrêne; Marius Schmidt; Birger Ulf Hansen; Alessio Collalti; Alessio Collalti; Ivan Shironya; Christian Brümmer; Russell L. Scott; Serge Rambal; Jonas Ardö; Natalia Restrepo-Coupe; Donatella Zona; Elizabeth A. Walter-Shea; Russell K. Monson; Silvano Fares; Sean P. Burns; Sean P. Burns; Mauro Cavagna; Guoyi Zhou; Suzanne M. Prober; Juha Pekka Tuovinen; Georgia R. Koerber; Yuelin Li; Alexander Knohl; Mikhail Mastepanov; Mikhail Mastepanov; Yanhong Tang; Johan Neirynck; Matthew Northwood; Pauline Buysse; Thomas Grünwald; Sabina Dore; N. Pirk; N. Pirk; Hiroki Ikawa; Craig Macfarlane; Jean-Marc Limousin; Carlos Marcelo Di Bella; Leiming Zhang; Juha Hatakka; Margaret S. Torn; Mika Aurela; Bert Gielen; Jiquan Chen; Regine Maier; Karl Schneider; Christian Wille; Nina Buchmann; Daniel Berveiller; Peter D. Blanken; Wayne S. Meyer; Dennis D. Baldocchi; Benjamin Loubet; Giovanni Manca; Hatim Abdalla M. ElKhidir; James Cleverly; Harry McCaughey; Agnès de Grandcourt; Matthias Peichl; Adam J. Liska; Jonathan E. Thom; Christian Bernhofer; Jean Marc Bonnefond; Alexander Graf; Roser Matamala; M. Goeckede; Marian Pavelka; Hank A. Margolis; Eugénie Paul-Limoges; Andrew S. Kowalski; Taro Nakai; Taro Nakai; Marcelo D. Nosetto; Tomomichi Kato; Ray Leuning; Beniamino Gioli; Marc Aubinet; Tuomas Laurila; Andrej Varlagin; Ignacio Goded; David R. Bowling; Nigel J. Tapper; Ana López-Ballesteros; Denis Loustau; Iris Feigenwinter; Uta Moderow; Edoardo Cremonese; Gianluca Filippa; Domenico Vitale; Abdelrahman Elbashandy; Gilberto Pastorello; Ettore D'Andrea; Gil Bohrer; Thomas L. Powell; Serena Marras; Daniela Famulari; Christopher M. Gough; Enrique P. Sánchez-Cañete; Satoru Takanashi; Michael J. Liddell; Jason Brodeur; Marc Fischer; Zoran Nesic; William J. Massman; Janina Klatt; Samuli Launiainen; Anne De Ligne; Leonardo Montagnani; Sebastian Wolf; Rainer Steinbrecher; Yingnian Li; Donatella Spano; A. Ribeca; Rosvel Bracho; Walter C. Oechel; B.R. Reverter; Jiří Dušek; Sebastian Westermann; Rachhpal S. Jassal; Derek Eamus; Claudia Consalvo; Claudia Consalvo; Marty Humphrey; Timo Vesala; Cristina Poindexter; Jeffrey P. Walker; Humberto Ribeiro da Rocha; Paul V. Bolstad; Elise Pendall; Diego Polidori; Peter S. Curtis; Chad Hanson; Francisco Domingo; Jason Beringer;pmc: PMC7347557
AbstractThe FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 791 citations 791 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 23visibility views 23 download downloads 33 Powered bymore_vert CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: Pierpaolo Zara; Roberto Ferrara; Laura Sanna; Pierpaolo Duce;Within current initiatives dedicated to provide information on the status of greenhouse gases emissions, the town of Sassari represents a pilot site for estimating the net exchange of carbon dioxide (emissions and sinks) at municipal level in Sardinia (Italy). A spatial and temporal high resolution greenhouse gas emissions inventory for the urban area of Sassari is currently under construction in line with European and international standard protocols to establish a baseline for tracking emission trends. This paper presents the preliminary results of the development of a simplified local emissions inventory where estimates of the atmospheric emissions are collected and cataloged by type of greenhouse gases, productive activity and emissive source on annual basis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 ItalyPublisher:Springer Science and Business Media LLC Authors: Snyder, Richard L.; Spano, Donatella Emma Ignazia; Duce, Pierpaolo; Cesaraccio, Carla;pmid: 11769317
In an arid environment, the effect of evaporation on energy balance can affect air temperature recordings and greatly impact on degree-day calculations. This is an important consideration when choosing a site or climate data for phenological models. To our knowledge, there is no literature showing the effect of the underlying surface and its fetch around a weather station on degree-day accumulations. In this paper, we present data to show that this is a serious consideration, and it can lead to dubious models. Microscale measurements of temperature and energy balance are presented to explain why the differences occur. For example, the effect of fetch of irrigated grass and wetting of bare soil around a weather station on diurnal temperature are reported. A 43-day experiment showed that temperature measured on the upwind edge of an irrigated grass area averaged 4% higher than temperatures recorded 200 m inside the grass field. When the single-triangle method was used with a 10 degrees C threshold and starting on May 19, the station on the upwind edge recorded 900 degree-days on June 28, whereas the interior station recorded 900 degree-days on July 1. Clearly, a difference in fetch can lead to big errors for large degree-day accumulations. Immediately after wetting, the temperature over a wet soil surface was similar to that measured over grass. However, the temperature over the soil increased more than that over the grass as the soil surface dried. Therefore, the observed difference between temperatures measured over bare soil and those over grass increases with longer periods between wettings. In most arid locations, measuring temperature over irrigated grass gives a lower mean annual temperature, resulting in lower annual cumulative degree-day values. This was verified by comparing measurements over grass with those over bare soil at several weather stations in a range of climates. To eliminate the effect of rainfall frequency, using temperature data collected only over irrigated grass, is recommended for long-term assessment of climate change effects on degree-day accumulation. In high evaporative conditions, a fetch of at least 100 m of grass is recommended. Our results clearly indicate that weather stations sited over bare soil have consistently higher degree-day accumulations. Therefore, especially in arid environments, phenology models based on temperature collected over bare soil are not transferable to those based on temperature recorded over irrigated grass. At a minimum, all degree-day-based phenology models reported in the literature should clearly describe the weather station site.
UnissResearch arrow_drop_down International Journal of BiometeorologyArticle . 2001 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s004840100103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert UnissResearch arrow_drop_down International Journal of BiometeorologyArticle . 2001 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s004840100103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | CLIMSAVEEC| CLIMSAVEMichael J. Hayes; Pierpaolo Duce; Miroslav Trnka; Pierpaolo Zara; Martin Dubrovský; Mark Svoboda;Future climate conditions for the Mediterranean region based on an ensemble of 16 Global Climate Models are expressed and mapped using three approaches, giving special attention to the intermodel uncertainty. (1) The scenarios of mean seasonal temperature and precipitation agree with the projections published previously by other authors. The results show an increase in temperature in all seasons and for all parts of the Mediterranean with good intermodel agreement. Precipitation is projected to decrease in all parts and all seasons (most significantly in summer) except for the northernmost parts in winter. The intermodel agreement for the precipitation changes is lower than for temperature. (2) Changes in drought conditions are represented using the Palmer Drought Severity Index and its intermediate Z-index product. The results indicate a significant decrease in soil moisture in all seasons, with the most significant decrease occurring in summer. The displayed changes exhibit high intermodel agreement. (3) The climate change scenarios are defined in terms of the changes in parameters of the stochastic daily weather generator calibrated with the modeled daily data; the emphasis is put on the parameters, which affect the diurnal and interdiurnal variability in weather series. These scenarios indicate a trend toward more extreme weather in the Mediterranean. Temperature maxima will increase not only because of an overall rise in temperature means, but partly (in some areas) because of increases in temperature variability and daily temperature range. Increased mean daily precipitation sums on wet days occurring in some seasons, and some parts of the Mediterranean may imply higher daily precipitation extremes, and decreased probability of wet day occurrence will imply longer drought spells all across the Mediterranean.
CNR ExploRA arrow_drop_down Regional Environmental ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-013-0562-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 6visibility views 6 Powered bymore_vert CNR ExploRA arrow_drop_down Regional Environmental ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-013-0562-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999 ItalyPublisher:Springer Science and Business Media LLC Authors: Carla Cesaraccio; Pierpaolo Duce; Richard L. Snyder; Donatella Spano;The objectives of this paper are to: (1) present 10 years of phenological data for nine natural species growing in a Mediterranean-type climate, (2) present threshold temperatures that were derived for the computation of cumulative degree-days (CDD), and (3) evaluate the sensitivity of the nine natural species to weather variability. The study was conducted at the Phenological Research Garden of Oristano, Sardinia, Italy, during the period 1986–96. The observations were made on five typical Mediterranean species and four species that are typical of higher latitudes. The mean annual pattern of phenological events and the CDD from 1 January are given for each development stage. Temperature thresholds were evaluated by comparing the standard deviation about the mean number of days in the development period for each species. A good relationship between timing of phenophase occurrence and temperature was observed for the Mediterranean species, which were little affected by variations in rainfall. Phenological development of the nonnative species was affected by springtime rainfall
International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 1999 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s004840050095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 95 citations 95 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 1999 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s004840050095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000 ItalyPublisher:Elsevier BV Authors: Spano D.; Snyder R.L; Duce P.; Paw U K.T;Fine-wire thermocouples were used to measure high-frequency temperature above and within canopies and structure functions were employed to determine temperature ramp characteristics, which were used in a fundamental conservation of energy equation to estimate sensible heat flux density. Earlier experiments over dense, tall, and short canopies demonstrated that the surface renewal method works, but requires a correction for uneven heating (e.g. D0.5 for tall, and D1.0 for short canopies). For sparse canopies, the calibration factor was unknown. Experiments were conducted in grape vineyards in California and Italy to determine whether the surface renewal method works in a sparse canopy and to determine if calibration is necessary. Surface renewal data were collected at several heights in the canopies and these were compared with simultaneous 1-D sonic anemometer measurements. The results indicated that the surface renewal technique provides good estimates of sensible heat flux density under all stability conditions without the need for calibration when the data are measured at about 90% of the canopy height. The values were generally within ca. 45 W m 2 of what was measured with a sonic anemometer. Separating the canopy into two layers provided even more accurate estimates of sensible heat flux density without the need for calibration. The best results were obtained when the lower layer was below the bottom of the vegetation and the upper layer included the vegetation. When combined with energy balance measurements of net radiation and soil heat flux density, using a thermocouple and the surface renewal technique offers an inexpensive alternative for estimating evapotranspiration with good accuracy. © 2000 Elsevier Science B.V. All rights reserved.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0168-1923(00)00167-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 97 citations 97 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0168-1923(00)00167-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Italy, Denmark, United Kingdom, SpainPublisher:Elsevier BV János Garadnai; Patricia Prieto; Josep Peñuelas; Pille Mänd; Marc Estiarte; Edit Kovács-Láng; Joke W. Westerveld; Albert Tietema; Claus Beier; Lea Hallik; Lea Hallik; Tibor Kalapos; Inger Kappel Schmidt; Tiit Nilson; Bridget A. Emmett; Olevi Kull; Pierpaolo Duce;handle: 11245/1.332983 , 10261/56370
The aim of this study was to evaluate the use of ground-based canopy reflectance measurements to detect changes in physiology and structure of vegetation in response to experimental warming and drought treatment at six European shrublands located along a North-South climatic gradient. We measured canopy reflectance, effective green leaf area index (green LAIe) and chlorophyll fluorescence of dominant species. The treatment effects on green LAIe varied among sites. We calculated three reflectance indices: photochemical reflectance index PRI [531 nm; 570 nm], normalized difference vegetation index NDVI680 [780 nm; 680 nm] using red spectral region, and NDVI570 [780 nm; 570 nm] using the same green spectral region as PRI. All three reflectance indices were significantly related to green LAIe and were able to detect changes in shrubland vegetation among treatments. In general warming treatment increased PRI and drought treatment reduced NDVI values. The significant treatment effect on photochemical efficiency of plants detected with PRI could not be detected by fluorescence measurements. However, we found canopy level measured PRI to be very sensitive to soil reflectance properties especially in vegetation areas with low green LAIe. As both soil reflectance and LAI varied between northern and southern sites it is problematic to draw universal conclusions of climate-derived changes in all vegetation types based merely on PRI measurements. We propose that canopy level PRI measurements can be more useful in areas of dense vegetation and dark soils.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARemote Sensing of EnvironmentArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRemote Sensing of EnvironmentArticle . 2010Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2009.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 17visibility views 17 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARemote Sensing of EnvironmentArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRemote Sensing of EnvironmentArticle . 2010Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2009.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Wiley Alberto Stanislao Atzori; Lukas Bayer; Giovanni Molle; Pasquale Arca; Antonello Franca; Marco Vannini; Gianluca Cocco; Domenico Usai; Pierpaolo Duce; Enrico Vagnoni;doi: 10.1002/ieam.4593
pmid: 35170206
AbstractThree million sheep raised on 10 000 active farms operating in traditional and innovative farming systems in Sardinia, Italy, account for 13% of sheep milk production in the European Union (EU). Almost all of the milk delivered is processed to sheep cheese and is destined for world trade. The Sardinian dairy sheep sector also emits approximately 1600 kt CO2eq/year, approximately 60% of regional livestock greenhouse gas (GHG), prompting the need for regional mitigation plans. The SheepToShip LIFE project (EU‐LIFE Climate Change Action 2014–2020) is a regional case study to test emission mitigation strategies. Based on the SheepToShip LIFE findings, this paper presents a systems perspective against the backdrop of the Sustainable Development Goals (SDGs) framework, with the aim of underlining system interlinkages between environmental, societal, and economic objectives. The project included (i) a life cycle thinking approach featuring environmental and socioeconomic traits of 18 sheep farms, (ii) on‐farm implementation and demonstration of eco‐innovative mitigation techniques indicating the most viable actions to reduce impact, (iii) focus groups discussing beliefs and reactions of the main stakeholders, and (iv) group model building producing a causal loop diagram from a systems thinking approach and exploring insights for regional policy‐making that aligns with the SDGs. Causal links connect public interventions and stakeholder interaction (SDG 17) to boost farm eco‐innovations (SDGs 9 and 8) and education and farmer training (SDG 4), and they foster efficient production (SDG 12) and high‐quality food provisioning (SDG 2). These benefits contribute to climate change mitigation (SDG 13), water quality (SDG 6), and farm ecosystem services (SDG 15). Integr Environ Assess Manag 2022;18:1187–1198. © 2022 SETAC
Integrated Environme... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIntegrated Environmental Assessment and ManagementArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.4593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Integrated Environme... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefIntegrated Environmental Assessment and ManagementArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.4593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Italy, Denmark, ItalyPublisher:Elsevier BV Funded by:EC | INCREASEEC| INCREASEDan Bruhn; Dan Bruhn; Pierpaolo Zara; Pierpaolo Duce; Teis Nørgaard Mikkelsen; Sønnik Clausen; Giovanbattista de Dato; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier;Infrared reflective (IR) curtains have been widely used to obtain passive nighttime warming in field ecosystem experiments in order to simulate and study climate warming effects on ecosystems. For any field installation with IR-reflective curtains in an ecosystem the achieved heating effect depends on the heat gain determined by the stored energy during daytime (incoming radiation can be used as a proxy) the heat conservation determined by the IR-reflective effect of the curtains (cloudiness can be used as a proxy) and the heat loss determined by convectional heat loss (wind speed can be used as a proxy). In this study, we demonstrate some feasible avenues for improving the achieved temperature increase (?T) when using IR-reflective curtains at field scale by attacking the three main factors determining the efficiency of the curtains: (i) improving the long wave IR reflection by the curtains, (ii) insulating the curtains and (iii) reducing the lateral wind speed. We provide experimentally based replies to the major concerns raised in the literature about the passive nighttime warming method. We show (a) that using IR-reflective curtains during night does in fact not result in nighttime warming only as there is a small carryover (<0.5 °C) into the following daytime, and (b) although the employment of IR-reflective curtains at nighttime may alter the RH, it is a small change and not always in the same direction.
Agricultural and For... arrow_drop_down Online Research Database In TechnologyArticle . 2013Data sources: Online Research Database In TechnologyAgricultural and Forest MeteorologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2013.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Online Research Database In TechnologyArticle . 2013Data sources: Online Research Database In TechnologyAgricultural and Forest MeteorologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2013.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 ItalyPublisher:American Society of Civil Engineers (ASCE) Ventura, Francesca; Faber, Ben A.; Bali, Khaled M.; Snyder, Richard L.; Spano, Donatella Emma Ignazia; Duce, Pierpaolo; Schulbach, Kurt F.;Accurate estimates of crop evapotranspiration (ETc), that quantify the total water used by a crop, are needed to optimize irrigation scheduling for horticultural crops and to minimize water degradation. During early growth, accurate assessments of ETc are difficult in vegetable crops because of high soil evaporation due to frequent irrigation. A model to estimate ETc for vegetable crops, using only daily reference evapotranspiration data as an input parameter, was developed. It calculates crop transpiration and soil evaporation based on ground cover and daily radiation intercepted by the canopy. The model uses a two-stage soil evaporation method adapted to conditions of variable reference evapotranspiration. The model was evaluated against data using measurements from two seasons of lettuce crop, two tomato fields in the same season, and one season of broccoli crop production. Using all of the crop data, the root-mean-square error for measured versus modelled daily ETc was 0.72 mm/day, indicating that the model works well.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9437(2001)127:6(339)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9437(2001)127:6(339)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu