- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Serbia, Portugal, Lithuania, France, United Kingdom, United Kingdom, France, France, France, Spain, Spain, United Kingdom, Serbia, Serbia, United Kingdom, Italy, Netherlands, Spain, Finland, United Kingdom, Netherlands, Denmark, NetherlandsPublisher:EDP Sciences Publicly fundedV. Kazukauskas; Jelena Radovanović; Konstantinos Petridis; Clas Persson; Lejo k. Joseph; Nicholas J. Ekins-Daukes; Zoran Jakšić; Ullrich Steiner; Shengda Wang; Janne Halme; Lucjan Jacak; Nikola Bednar; Ákos Nemcsics; Mimoza Ristova; Ahmed Neijm; Neil Beattie; José Silva; José Silva; Alessio Gagliardi; Ivana Savic; Felipe Murphy Armando; Rasit Turan; Spyridon Kassavetis; Stanko Tomić; Zoe Amin-Akhlaghi; Androula G. Nassiopoulou; Urša Opara Krašovec; Abdurrahman Şengül; Pavel Tománek; Matthias Auf der Maur; Ivana Capan; Martin Loncaric; Søren Madsen; Diego Alonso-Álvarez; Shuxia Tao; Christin David; Fatma Yuksel; Tareq Abu Hamed; Stefan Birner; Efrat Lifshitz; Georg Pucker; Mateja Hočevar; Witold Jacak; N. Adamovic; M. Sendova-Vassileva; Jaroslav Zadny; Jose G. F. Coutinho; Marija Drev; Frederic Cortes Juan; Denis Mencaraglia; Marco Califano; JM José Maria Ulloa; Jan Storch; V. Donchev; James P. Connolly; Antti Tukiainen; Victor Neto; Jean-François Guillemoles; Boukje Ehlen; Mircea Guina; Maria E. Messing; Bostjan Cerne; J. C. Rimada; Knut Deppert; Jacky Even; Laurent Pedesseau; Kristian Berland; M. J. M. Gomes; Hele Savin; Javad Zarbakhsh; Jean-Louis Lazzari; David Fuertes Marrón; Radovan Kopecek; Katarzyna Kluczyk; Jean-Paul Kleider; Laurentiu Fara; Antonio Martí Vega; Blas Garrido; Irinela Chilibon; Lacramioara Popescu; Urs Aeberhard; Emmanuel Stratakis; Violetta Gianneta;handle: 20.500.12614/1645 , 2108/206746 , 1822/57392 , 10044/1/69765
Photovoltaics is amongst the most important technologies for renewable energy sources, and plays a key role in the development of a society with a smaller environmental footprint. Key parameters for solar cells are their energy conversion efficiency, their operating lifetime, and the cost of the energy obtained from a photovoltaic system compared to other sources. The optimization of these aspects involves the exploitation of new materials and development of novel solar cell concepts and designs. Both theoretical modeling and characterization of such devices require a comprehensive view including all scales from the atomic to the macroscopic and industrial scale. The different length scales of the electronic and optical degrees of freedoms specifically lead to an intrinsic need for multiscale simulation, which is accentuated in many advanced photovoltaics concepts including nanostructured regions. Therefore, multiscale modeling has found particular interest in the photovoltaics community, as a tool to advance the field beyond its current limits. In this article, we review the field of multiscale techniques applied to photovoltaics, and we discuss opportunities and remaining challenges.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BYFull-Text: https://art.torvergata.it/bitstream/2108/206746/1/2018-EPJPhotovolt_9_MultiscaleSolar.pdfData sources: Archivio della Ricerca - Università di Roma Tor vergataVilnius University Institutional RepositoryArticle . 2018Data sources: Vilnius University Institutional RepositoryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/206746Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/69765Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository of IMDEA NanocienciaArticle . 2018License: CC BY NC NDData sources: Institutional Repository of IMDEA NanocienciaSpiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryUniversidade do Minho: RepositoriUMOther literature type . 2018Data sources: Universidade do Minho: RepositoriUMAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2018008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 79visibility views 79 download downloads 72 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BYFull-Text: https://art.torvergata.it/bitstream/2108/206746/1/2018-EPJPhotovolt_9_MultiscaleSolar.pdfData sources: Archivio della Ricerca - Università di Roma Tor vergataVilnius University Institutional RepositoryArticle . 2018Data sources: Vilnius University Institutional RepositoryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/206746Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/69765Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository of IMDEA NanocienciaArticle . 2018License: CC BY NC NDData sources: Institutional Repository of IMDEA NanocienciaSpiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryUniversidade do Minho: RepositoriUMOther literature type . 2018Data sources: Universidade do Minho: RepositoriUMAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2018008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Norway, FrancePublisher:MDPI AG Funded by:RCN | High-performance tandem h...RCN| High-performance tandem heterojunction solar cells for specific applicationsLaurentiu Fara; Irinela Chilibon; Ørnulf Nordseth; Dan Craciunescu; Dan Savastru; Cristina Vasiliu; Laurentiu Baschir; Silvian Fara; Raj Kumar; Edouard Monakhov; James P. Connolly;doi: 10.3390/en13184667
handle: 10852/80212 , 11250/2735674
This study is aimed at increasing the performance and reliability of silicon-based heterojunction solar cells with advanced methods. This is achieved by a numerical electro-optical modeling and reliability analysis for such solar cells correlated with experimental analysis of the Cu2O absorber layer. It yields the optimization of a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model. Experimental research of N-doped Cu2O thin films was dedicated to two main activities: (1) fabrication of specific samples by DC magnetron sputtering and (2) detailed characterization of the analyzed samples. This last investigation was based on advanced techniques: morphological (scanning electron microscopy—SEM and atomic force microscopy—AFM), structural (X-ray diffraction—XRD), and optical (spectroscopic ellipsometry—SE and Fourier-transform infrared spectroscopy—FTIR). This approach qualified the heterojunction solar cell based on cuprous oxide with nitrogen as an attractive candidate for high-performance solar devices. A reliability analysis based on Weibull statistical distribution establishes the degradation degree and failure rate of the studied solar cells under stress and under standard conditions.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4667/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/80212Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4667/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/80212Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Laurentiu Fara; Irinela Chilibon; Dan Craciunescu; Alexandru Diaconu; Silvian Fara;doi: 10.3390/en16073033
PV technology offers a sustainable solution to the increased energy demand especially based on mono- and polycrystalline silicon solar cells. The most recent years have allowed the successful development of perovskite and tandem heterojunction Si-based solar cells with energy conversion efficiency over 28%. The metal oxide heterojunction tandem solar cells have a great potential application in the future photovoltaic field. Cu2O (band gap of 2.07 eV) and ZnO (band gap of 3.3 eV) are very good materials for solar cells and their features completely justify the high interest for the research of tandem heterojunction based on them. This review article analyzes high-efficiency silicon-based tandem heterojunction solar cells (HTSCs) with metal oxides. It is structured on six chapters dedicated to four main issues: (1) fabrication techniques and device architecture; (2) characterization of Cu2O and ZnO layers; (3) numerical modelling of Cu2O/ZnO HTSC; (4) stability and reliability approach. The device architecture establishes that the HTSC is constituted from two sub-cells: ZnO/Cu2O and c-Si. The four terminal tandem solar cells contribute to the increased current density and conversion efficiency. Cu2O and ZnO materials are defined as promising candidates for high-efficiency solar devices due to the morphological, structural, and optical characterization emphasized. Based on multiscale modelling of PV technology, the electrical and optical numerical modelling of the two sub-cells of HTSC are presented. At the same time, the thermal stability and reliability approach are essential and needed for an optimum operation of HTSC, concerning the cell lifetime and degradation degree. Further progress on flexible HTSC could determine that such advanced solar devices would become commercially sustainable in the near future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Serbia, Portugal, Lithuania, France, United Kingdom, United Kingdom, France, France, France, Spain, Spain, United Kingdom, Serbia, Serbia, United Kingdom, Italy, Netherlands, Spain, Finland, United Kingdom, Netherlands, Denmark, NetherlandsPublisher:EDP Sciences Publicly fundedV. Kazukauskas; Jelena Radovanović; Konstantinos Petridis; Clas Persson; Lejo k. Joseph; Nicholas J. Ekins-Daukes; Zoran Jakšić; Ullrich Steiner; Shengda Wang; Janne Halme; Lucjan Jacak; Nikola Bednar; Ákos Nemcsics; Mimoza Ristova; Ahmed Neijm; Neil Beattie; José Silva; José Silva; Alessio Gagliardi; Ivana Savic; Felipe Murphy Armando; Rasit Turan; Spyridon Kassavetis; Stanko Tomić; Zoe Amin-Akhlaghi; Androula G. Nassiopoulou; Urša Opara Krašovec; Abdurrahman Şengül; Pavel Tománek; Matthias Auf der Maur; Ivana Capan; Martin Loncaric; Søren Madsen; Diego Alonso-Álvarez; Shuxia Tao; Christin David; Fatma Yuksel; Tareq Abu Hamed; Stefan Birner; Efrat Lifshitz; Georg Pucker; Mateja Hočevar; Witold Jacak; N. Adamovic; M. Sendova-Vassileva; Jaroslav Zadny; Jose G. F. Coutinho; Marija Drev; Frederic Cortes Juan; Denis Mencaraglia; Marco Califano; JM José Maria Ulloa; Jan Storch; V. Donchev; James P. Connolly; Antti Tukiainen; Victor Neto; Jean-François Guillemoles; Boukje Ehlen; Mircea Guina; Maria E. Messing; Bostjan Cerne; J. C. Rimada; Knut Deppert; Jacky Even; Laurent Pedesseau; Kristian Berland; M. J. M. Gomes; Hele Savin; Javad Zarbakhsh; Jean-Louis Lazzari; David Fuertes Marrón; Radovan Kopecek; Katarzyna Kluczyk; Jean-Paul Kleider; Laurentiu Fara; Antonio Martí Vega; Blas Garrido; Irinela Chilibon; Lacramioara Popescu; Urs Aeberhard; Emmanuel Stratakis; Violetta Gianneta;handle: 20.500.12614/1645 , 2108/206746 , 1822/57392 , 10044/1/69765
Photovoltaics is amongst the most important technologies for renewable energy sources, and plays a key role in the development of a society with a smaller environmental footprint. Key parameters for solar cells are their energy conversion efficiency, their operating lifetime, and the cost of the energy obtained from a photovoltaic system compared to other sources. The optimization of these aspects involves the exploitation of new materials and development of novel solar cell concepts and designs. Both theoretical modeling and characterization of such devices require a comprehensive view including all scales from the atomic to the macroscopic and industrial scale. The different length scales of the electronic and optical degrees of freedoms specifically lead to an intrinsic need for multiscale simulation, which is accentuated in many advanced photovoltaics concepts including nanostructured regions. Therefore, multiscale modeling has found particular interest in the photovoltaics community, as a tool to advance the field beyond its current limits. In this article, we review the field of multiscale techniques applied to photovoltaics, and we discuss opportunities and remaining challenges.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BYFull-Text: https://art.torvergata.it/bitstream/2108/206746/1/2018-EPJPhotovolt_9_MultiscaleSolar.pdfData sources: Archivio della Ricerca - Università di Roma Tor vergataVilnius University Institutional RepositoryArticle . 2018Data sources: Vilnius University Institutional RepositoryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/206746Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/69765Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository of IMDEA NanocienciaArticle . 2018License: CC BY NC NDData sources: Institutional Repository of IMDEA NanocienciaSpiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryUniversidade do Minho: RepositoriUMOther literature type . 2018Data sources: Universidade do Minho: RepositoriUMAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2018008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 79visibility views 79 download downloads 72 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BYFull-Text: https://art.torvergata.it/bitstream/2108/206746/1/2018-EPJPhotovolt_9_MultiscaleSolar.pdfData sources: Archivio della Ricerca - Università di Roma Tor vergataVilnius University Institutional RepositoryArticle . 2018Data sources: Vilnius University Institutional RepositoryArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/206746Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/69765Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAInstitutional Repository of IMDEA NanocienciaArticle . 2018License: CC BY NC NDData sources: Institutional Repository of IMDEA NanocienciaSpiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryUniversidade do Minho: RepositoriUMOther literature type . 2018Data sources: Universidade do Minho: RepositoriUMAaltodoc Publication ArchiveArticle . 2018 . Peer-reviewedData sources: Aaltodoc Publication ArchiveÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjpv/2018008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Norway, FrancePublisher:MDPI AG Funded by:RCN | High-performance tandem h...RCN| High-performance tandem heterojunction solar cells for specific applicationsLaurentiu Fara; Irinela Chilibon; Ørnulf Nordseth; Dan Craciunescu; Dan Savastru; Cristina Vasiliu; Laurentiu Baschir; Silvian Fara; Raj Kumar; Edouard Monakhov; James P. Connolly;doi: 10.3390/en13184667
handle: 10852/80212 , 11250/2735674
This study is aimed at increasing the performance and reliability of silicon-based heterojunction solar cells with advanced methods. This is achieved by a numerical electro-optical modeling and reliability analysis for such solar cells correlated with experimental analysis of the Cu2O absorber layer. It yields the optimization of a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model. Experimental research of N-doped Cu2O thin films was dedicated to two main activities: (1) fabrication of specific samples by DC magnetron sputtering and (2) detailed characterization of the analyzed samples. This last investigation was based on advanced techniques: morphological (scanning electron microscopy—SEM and atomic force microscopy—AFM), structural (X-ray diffraction—XRD), and optical (spectroscopic ellipsometry—SE and Fourier-transform infrared spectroscopy—FTIR). This approach qualified the heterojunction solar cell based on cuprous oxide with nitrogen as an attractive candidate for high-performance solar devices. A reliability analysis based on Weibull statistical distribution establishes the degradation degree and failure rate of the studied solar cells under stress and under standard conditions.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4667/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/80212Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4667/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/80212Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Laurentiu Fara; Irinela Chilibon; Dan Craciunescu; Alexandru Diaconu; Silvian Fara;doi: 10.3390/en16073033
PV technology offers a sustainable solution to the increased energy demand especially based on mono- and polycrystalline silicon solar cells. The most recent years have allowed the successful development of perovskite and tandem heterojunction Si-based solar cells with energy conversion efficiency over 28%. The metal oxide heterojunction tandem solar cells have a great potential application in the future photovoltaic field. Cu2O (band gap of 2.07 eV) and ZnO (band gap of 3.3 eV) are very good materials for solar cells and their features completely justify the high interest for the research of tandem heterojunction based on them. This review article analyzes high-efficiency silicon-based tandem heterojunction solar cells (HTSCs) with metal oxides. It is structured on six chapters dedicated to four main issues: (1) fabrication techniques and device architecture; (2) characterization of Cu2O and ZnO layers; (3) numerical modelling of Cu2O/ZnO HTSC; (4) stability and reliability approach. The device architecture establishes that the HTSC is constituted from two sub-cells: ZnO/Cu2O and c-Si. The four terminal tandem solar cells contribute to the increased current density and conversion efficiency. Cu2O and ZnO materials are defined as promising candidates for high-efficiency solar devices due to the morphological, structural, and optical characterization emphasized. Based on multiscale modelling of PV technology, the electrical and optical numerical modelling of the two sub-cells of HTSC are presented. At the same time, the thermal stability and reliability approach are essential and needed for an optimum operation of HTSC, concerning the cell lifetime and degradation degree. Further progress on flexible HTSC could determine that such advanced solar devices would become commercially sustainable in the near future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu