- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOField of Science
Country
Source
Organization
- Energy Research
- 11. Sustainability
- 1. No poverty
- Energy Research
- 11. Sustainability
- 1. No poverty
description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Funded by:EC | PARIS REINFORCEEC| PARIS REINFORCEAuthors:Song, Shaojie;
Song, Shaojie
Song, Shaojie in OpenAIRELin, Haiyang;
Lin, Haiyang
Lin, Haiyang in OpenAIRESherman, Peter;
Sherman, Peter
Sherman, Peter in OpenAIREYang, Xi;
+5 AuthorsYang, Xi
Yang, Xi in OpenAIRESong, Shaojie;
Song, Shaojie
Song, Shaojie in OpenAIRELin, Haiyang;
Lin, Haiyang
Lin, Haiyang in OpenAIRESherman, Peter;
Sherman, Peter
Sherman, Peter in OpenAIREYang, Xi;
Yang, Xi
Yang, Xi in OpenAIREChen, Shi;
Chen, Shi
Chen, Shi in OpenAIRELu, Xi;
Lu, Tianguang;
Chen, Xinyu; McElroy, Michael B.;Lu, Tianguang
Lu, Tianguang in OpenAIREThe paper explores options for a 2050 carbon free energy future for India. Onshore wind and solar sources are projected as the dominant primary contributions to this objective. The analysis envisages an important role for so-called green hydrogen produced by electrolysis fueled by these carbon free energy sources. This hydrogen source can be used to accommodate for the intrinsic variability of wind and solar complementing opportunities for storage of power by batteries and pumped hydro. The green source of hydrogen can be used also to supplant current industrial uses of gray hydrogen produced in the Indian context largely from natural gas with important related emissions of CO2. The paper explores further options for use of green hydrogen to lower emissions from otherwise difficult to abate sectors of both industry and transport. The analysis is applied to identify the least cost options to meet India's zero carbon future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2022.104399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 29 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2022.104399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:UKRI | Investigating the impact ...UKRI| Investigating the impact of the electrification of transport to reduce carbon emissions on Natural CapitalJiming Hao; Yu Deng; Noah Elbot; Chris P. Nielsen; Yuanchen Wang;Kathryn G. Logan;
Michael B. McElroy;Kathryn G. Logan
Kathryn G. Logan in OpenAIREShi Chen;
Yufei Miao;Shi Chen
Shi Chen in OpenAIREXi Lu;
Summary Construction of carbon-intensive energy infrastructure is well underway under the Belt & Road Initiative (BRI), challenging the global climate target. Regionally abundant solar power could provide an alternative for electricity generation. An integrative spatial model was developed to evaluate the technical potential of solar photovoltaic power. The influence of impacting factors was quantified systematically on an hourly basis. Results suggest that the electricity potential for the BRI region reaches 448.9 PWh annually, 41.3 times the regional demand for electricity in 2016. Tapping 3.7% of the potential through deploying 7.8 TW capacity could satisfy the regional electricity demand projected for 2030, requiring an investment of approximately 11.2 trillion 2017 USD and a commitment in land area of 88,426 km2, approximately 0.9% of China’s total. Countries endowed with 70.7% of the overall potential consume only 30.1% of regional electricity. The imbalance underscores the advantage of regional cooperation and investments in interconnected grids.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2019.06.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2019.06.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Chris P. Nielsen; Jun Bi;Haikun Wang;
Haikun Wang; +2 AuthorsHaikun Wang
Haikun Wang in OpenAIREChris P. Nielsen; Jun Bi;Haikun Wang;
Haikun Wang; Yanxia Zhang;Haikun Wang
Haikun Wang in OpenAIREXi Lu;
Abstract China is now the largest emitter of CO2 in the world, having contributed nearly half of the global increase in carbon emissions between 1980 and 2010. The existing literature on China׳s carbon emissions has focused on two dimensions: the amount of CO2 emitted within China׳s geographical boundaries (a production-based perspective), and the drivers of, and responsibility for, these emissions (a consumption-based perspective). The current study begins with a comprehensive review of China׳s CO2 emissions, and then analyzes their driving forces from both consumption and production perspectives, at both national and provincial levels. It is concluded that China׳s aggregate national CO2 emissions from fossil fuel consumption and cement production maintained high growth rates during 2000–2010. National emissions reached 6.8–7.3 billion tons in 2007, nearly 25% of which were caused by net exports (i.e., exports minus imports) to other countries. However, emission characteristics varied significantly among different regions and provinces, and considerable emission leakage from the developed eastern regions to inland and western areas of the country was found. The objectives of China׳s policies should therefore be broadened from continued improvement of energy efficiency to accelerating regional technology transfer and preventing mere relocation of carbon-intensive economic activities from developed coastal regions to less developed, inland provinces. To rapidly and effectively cut down China׳s carbon emissions, moreover, its energy supply should be aggressively decarbonized by promoting renewable and low carbon energy sources.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 United StatesPublisher:Springer Science and Business Media LLC Authors:Haikun Wang;
Haikun Wang
Haikun Wang in OpenAIREXi Lu;
Yu Deng;
Yaoguang Sun; +6 AuthorsYu Deng
Yu Deng in OpenAIREHaikun Wang;
Haikun Wang
Haikun Wang in OpenAIREXi Lu;
Yu Deng;
Yaoguang Sun; Chris P. Nielsen; Yifan Liu; Ge Zhu;Yu Deng
Yu Deng in OpenAIREMaoliang Bu;
Maoliang Bu
Maoliang Bu in OpenAIREJun Bi;
Michael B. McElroy;Jun Bi
Jun Bi in OpenAIREChina pledges to peak CO2 emissions by 2030 or sooner under the Paris Agreement to limit global warming to 2 °C or less by the end of the century. By examining CO2 emissions from 50 Chinese cities over the period 2000–2016, we found a close relationship between per capita emissions and per capita gross domestic product (GDP) for individual cities, following the environmental Kuznets curve, despite diverse trajectories for CO2 emissions across the cities. Results show that carbon emissions peak for most cities at a per capita GDP (in 2011 purchasing power parity) of around US$21,000 (80% confidence interval: US$19,000 to 22,000). Applying a Monte Carlo approach to simulate the peak of per capita emissions using a Kuznets function based on China’s historical emissions, we project that emissions for China should peak at 13–16 GtCO2 yr−1 between 2021 and 2025, approximately 5–10 yr ahead of the current Paris target of 2030. We show that the challenges faced by individual types of Chinese cities in realizing low-carbon development differ significantly depending on economic structure, urban form and geographical location. Chinese commitments under the Paris Agreement are premised on a peak in CO2 emissions by 2030. Using the Kuznets curve and emissions and gross domestic product data from 50 cities in the country, this Analysis predicts that emissions in China could peak between 2021 and 2025, well ahead of the Paris target.
Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-019-0339-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu251 citations 251 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-019-0339-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Hewen Zhou;Jiashuo Li;
Hanping Chen; Haiping Yanga; +5 AuthorsJiashuo Li
Jiashuo Li in OpenAIREHewen Zhou;Jiashuo Li;
Hanping Chen; Haiping Yanga; Xiaoyan Zhang; Chris P. Nielsen;Jiashuo Li
Jiashuo Li in OpenAIREXi Lu;
Xi Lu;Qing Yang;
Qing Yang
Qing Yang in OpenAIREAbstract Among biomass energy technologies which are treated as the promising way to mitigate critical energy crisis and global climate change, biomass gasification plays a key role given to its gaseous fuels especially syngas for distributed power plant. However, a system analysis for the energy saving and greenhouse gas emissions abatement potentials of gasification system has been directed few attentions. This study presents a system analysis that combines process and input-output analyses of GHG emissions and energy costs throughout the full chain of activities associated with biomass gasification. Incorporating agricultural production, industrial process and wastewater treatment which is always ignored, the energy inputs in life cycle are accounted for the first commercial biomass gasification power plant in China. Results show that the non-renewable energy cost and GHG emission intensity of the biomass gasification system are 0.163 MJ/MJ and 0.137 kg CO2-eq/MJ respectively, which reaffirm its advantages over coal-fired power plants in clean energy and environmental terms. Compared with other biomass energy processes, gasification performs well as its non-renewable energy cost and CO2 intensity are in the central ranges of those for all of these technologies. Construction of the plant is an important factor in the process's non-renewable energy consumption, contributing about 44.48% of total energy use. Wastewater treatment is the main contributor to GHG emissions. The biomass gasification and associated wastewater treatment technologies have critical influence on the sustainability and renewability of biomass gasification. The results provide comprehensive analysis for biomass gasification performance and technology improvement potential in regulating biomass development policies for aiming to achieve sustainability globally.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.09.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.09.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Authors: Michael B. McElroy; Xinyu Chen;Xi Lu;
Chongqing Kang;
Chongqing Kang
Chongqing Kang in OpenAIREdoi: 10.1021/es503767x
pmid: 25409413
Although capacity credits for wind power have been embodied in power systems in the U.S. and Europe, the current planning framework for electricity in China continues to treat wind power as a nondispatchable source with zero contribution to firm capacity. This study adopts a rigorous reliability model for the electric power system evaluating capacity credits that should be recognized for offshore wind resources supplying power demands for Jiangsu, China. Jiangsu is an economic hub located in the Yangtze River delta accounting for 10% of the total electricity consumed in China. Demand for electricity in Jiangsu is projected to increase from 331 TWh in 2009 to 800 TWh by 2030. Given a wind penetration level of 60% for the future additional Jiangsu power supply, wind resources distributed along the offshore region of five coastal provinces in China (Shandong, Jiangsu, Shanghai, Zhejiang, and Fujian) should merit a capacity credit of 12.9%, the fraction of installed wind capacity that should be recognized to displace coal-fired systems without violating the reliability standard. In the high-coal-price scenario, with 60% wind penetration, reductions in CO2 emissions relative to a business as usual reference could be as large as 200.2 million tons of CO2 or 51.8% of the potential addition, with a cost for emissions avoided of $29.0 per ton.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es503767x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es503767x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:Michael B. McElroy;
Michael B. McElroy
Michael B. McElroy in OpenAIREJianxiao Wang;
Jianxiao Wang
Jianxiao Wang in OpenAIREChris P. Nielsen;
Chris P. Nielsen
Chris P. Nielsen in OpenAIREWei Peng;
+4 AuthorsWei Peng
Wei Peng in OpenAIREMichael B. McElroy;
Michael B. McElroy
Michael B. McElroy in OpenAIREJianxiao Wang;
Jianxiao Wang
Jianxiao Wang in OpenAIREChris P. Nielsen;
Chris P. Nielsen
Chris P. Nielsen in OpenAIREWei Peng;
Wei Peng
Wei Peng in OpenAIREYanfen Wang;
Yanfen Wang
Yanfen Wang in OpenAIREXi Lu;
Minghao Zhuang; Minghao Zhuang;Abstract Approximately seven million population in the Qinghai-Tibet Plateau of China, a global climate sensitive region, still rely primarily on yak dung for household cooking and heating. The treatment and combustion of yak dung result in a variety of negative impacts in terms of local alpine grassland degradation, indoor air pollution, public health risk, as well as global climate change. There is an urgent need to explore alternative pathway for affordable and clean energy as indicated in the United Nations’ Sustainable Development Goals for 2030. This perspective has analyzed the key challenges rooted in yak dung use on the Qinghai-Tibet Plateau region. Based on this, this perspective has further proposed a new complementary energy system to take advantage of locally available, clean and sustainable energy sources of wind and solar power, and have provided economic analyses. Meanwhile, this perspective has pointed out the potential barriers to promoting the new complementary energy system in the Qinghai-Tibet Plateau region due to traditional habits, economic factors and policies. Finally, strategies for transitioning from yak dung to the proposed alternative energy system is discussed at the end. Successful energy transition for the Qinghai-Tibet Plateau region offers an important option to achieving many other sustainable development goals related to climate change, economic development, and environment. The perspective is expected to shed light on the development of sustainable energy in other developing region or countries in the world to address multiple societal goals.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors:Shi Chen;
Shi Chen
Shi Chen in OpenAIREXi Lu;
Chris P. Nielsen;
Chris P. Nielsen
Chris P. Nielsen in OpenAIREMichael B. McElroy;
+6 AuthorsMichael B. McElroy
Michael B. McElroy in OpenAIREShi Chen;
Shi Chen
Shi Chen in OpenAIREXi Lu;
Chris P. Nielsen;
Chris P. Nielsen
Chris P. Nielsen in OpenAIREMichael B. McElroy;
Michael B. McElroy
Michael B. McElroy in OpenAIREGang He;
Shaohui Zhang;
Shaohui Zhang
Shaohui Zhang in OpenAIREKebin He;
Kebin He
Kebin He in OpenAIREXiu Yang;
Xiu Yang
Xiu Yang in OpenAIREFang Zhang;
Jiming Hao;Fang Zhang
Fang Zhang in OpenAIREAbstractThe global surge in solar photovoltaic (PV) power has featured spatial specialization from manufacturing to installation along its industrial chain. Yet how to improve PV climate benefits are under-investigated. Here we explore the evolution of net greenhouse gas (GHG) mitigation of PV industry from 2009–2060 with a spatialized-dynamic life-cycle-analysis. Results suggest a net GHG mitigation of 1.29 Gt CO2-equivalent from 2009–2019, achieved by 1.97 Gt of mitigation from installation minus 0.68 Gt of emissions from manufacturing. The highest net GHG mitigation among future manufacturing-installation-scenarios to meet 40% global power demand in 2060 is as high as 204.7 Gt from 2020–2060, featuring manufacturing concentrated in Europe and North America and prioritized PV installations in carbon-intensive nations. This represents 97.5 Gt more net mitigation than the worst-case scenario, equivalent to 1.9 times 2020 global GHG emissions. The results call for strategic international coordination of PV industrial chain to increase GHG net mitigation.
IIASA DARE arrow_drop_down Communications Earth & EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-023-01006-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Communications Earth & EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-023-01006-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedAuthors:Jia Xing;
Jia Xing
Jia Xing in OpenAIREXi Lu;
Shuxiao Wang;
Tong Wang; +14 AuthorsShuxiao Wang
Shuxiao Wang in OpenAIREJia Xing;
Jia Xing
Jia Xing in OpenAIREXi Lu;
Shuxiao Wang;
Tong Wang; Dian Ding;Shuxiao Wang
Shuxiao Wang in OpenAIRESha Yu;
Sha Yu
Sha Yu in OpenAIREDrew Shindell;
Drew Shindell
Drew Shindell in OpenAIREYang Ou;
Lidia Morawska;
Siwei Li; Lu Ren;Lidia Morawska
Lidia Morawska in OpenAIREYuqiang Zhang;
Dan Loughlin;Yuqiang Zhang
Yuqiang Zhang in OpenAIREHaotian Zheng;
Haotian Zheng
Haotian Zheng in OpenAIREBin Zhao;
Bin Zhao
Bin Zhao in OpenAIREShuchang Liu;
Shuchang Liu
Shuchang Liu in OpenAIREKirk R. Smith;
Jiming Hao;Kirk R. Smith
Kirk R. Smith in OpenAIRESignificance Pathways for China to achieve its dual targets of air quality and CO 2 mitigation in 2035 were investigated through a newly developed evaluation framework coupling integrated assessment and air quality models. Results indicate that the low-carbon energy policies, traditionally regarded as a primary result of climate mitigation, are likely driven more by the efforts on air quality attainment in China. To achieve air quality attainment in China could lead to more reduction in CO 2 emissions than its Nationally Determined Contribution. In addition, stronger low-carbon policies will bring significant benefits to public health via improvements in air quality. This study also provides a valuable reference for other developing countries to address their duel challenges of climate change and air pollution.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2013297117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 117 citations 117 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2013297117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors:Shi Chen;
Youxuan Xiao;Shi Chen
Shi Chen in OpenAIREChongyu Zhang;
Chongyu Zhang
Chongyu Zhang in OpenAIREXi Lu;
+2 AuthorsShi Chen;
Youxuan Xiao;Shi Chen
Shi Chen in OpenAIREChongyu Zhang;
Chongyu Zhang
Chongyu Zhang in OpenAIREXi Lu;
Kebin He; Jiming Hao;Wind energy has become one of the most important measures for China to achieve its carbon neutrality goal. The spatial and temporal evolvement of economic competitiveness for wind energy becomes an important concern in shaping the decarbonization pathway in China. There has been an urgent need in power system planning to model the future dynamics of cost decline and supply potential for wind power in the context of carbon neutrality until 2060. Existing studies often fail to capture the rapid decline in the cost of wind power generation in recent years, and the prediction of wind power cost decline is more conservative than the reality. This study constructs an integrated model to evaluate the cost-competitiveness and grid parity potential of China's onshore wind electricity at fine spatial resolution with updated parameters. Results indicate that the total onshore wind potential amounts to 54.0 PWh. The average levelized cost of wind power is expected to decline from CNY 0.39 kWh-1 in 2020 to CNY 0.30 and CNY 0.21 kWh-1 in 2030 and 2060. 28.3%, 67.6%, and 97.6% of the technical potentials hold power costs lower than coal power in 2020, 2030, and 2060.
Environmental Scienc... arrow_drop_down Environmental Science and EcotechnologyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ese.2023.100323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and EcotechnologyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ese.2023.100323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu