- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Jian Liu; Jian Liu; Peiyuan Wang; Xiaoxuan Lu; Xiaorong Wei; Shumin Sun; Yong-Hui Zhang; Yash Boyjoo; Dongjie Guo;Abstract The lamellar transition metal oxides, sulfides and carbides with expanded interlayer spacing have attracted wide attention due to their enlargeable interlayer diffusion channels and larger contact areas. However, the existence of pillars between the interlayer would occupy the inter layer voids, which would hinder the accommodation of more lithium ion, sodium ion and so on. Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing was prepared by sintering the pre-intercalated pristine Ti3C2 with TMAOH under N2 atmosphere. The obtained TiO2/Ti3C2 composite showed remarkable capacity (237.8 mAh g−1 at 100 mA g−1) and long-term stability (153 mAh g−1after 100 cycles at current density of 600 mA g−1) as anode material for sodium ion batteries. These remarkable electrochemical properties of pillar-free TiO2/Ti3C2 were ascribed to its effective expanded interlayer distance fixed by TiO2 nanoparticles attached on the edge plane of Ti3C2, pseudocapacitance contribution of TiO2 nanoparticles, and the synergistic effect between TiO2 and Ti3C2. This work offered a general strategy for fabricating pillar-free MXene-based composites with enlarged interlayer spacing.
Journal of Power Sou... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.227756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Power Sou... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.227756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Jian Liu; Jian Liu; Peiyuan Wang; Xiaoxuan Lu; Xiaorong Wei; Shumin Sun; Yong-Hui Zhang; Yash Boyjoo; Dongjie Guo;Abstract The lamellar transition metal oxides, sulfides and carbides with expanded interlayer spacing have attracted wide attention due to their enlargeable interlayer diffusion channels and larger contact areas. However, the existence of pillars between the interlayer would occupy the inter layer voids, which would hinder the accommodation of more lithium ion, sodium ion and so on. Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing was prepared by sintering the pre-intercalated pristine Ti3C2 with TMAOH under N2 atmosphere. The obtained TiO2/Ti3C2 composite showed remarkable capacity (237.8 mAh g−1 at 100 mA g−1) and long-term stability (153 mAh g−1after 100 cycles at current density of 600 mA g−1) as anode material for sodium ion batteries. These remarkable electrochemical properties of pillar-free TiO2/Ti3C2 were ascribed to its effective expanded interlayer distance fixed by TiO2 nanoparticles attached on the edge plane of Ti3C2, pseudocapacitance contribution of TiO2 nanoparticles, and the synergistic effect between TiO2 and Ti3C2. This work offered a general strategy for fabricating pillar-free MXene-based composites with enlarged interlayer spacing.
Journal of Power Sou... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.227756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Power Sou... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.227756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Jiali Liu; Jiali Liu; Qihua Yang; Chunzhi Li; Chunzhi Li; Haoran Liu; Haoran Liu; He Li; Jian Liu;doi: 10.1039/d0ta06442d
COF and TiO2 core–shell structured heterojunctions with the spatial location of two semiconductors either in the core or on the shell are precisely designed.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta06442d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta06442d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Jiali Liu; Jiali Liu; Qihua Yang; Chunzhi Li; Chunzhi Li; Haoran Liu; Haoran Liu; He Li; Jian Liu;doi: 10.1039/d0ta06442d
COF and TiO2 core–shell structured heterojunctions with the spatial location of two semiconductors either in the core or on the shell are precisely designed.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta06442d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta06442d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Funded by:UKRI | ISCF Wave 1:Designing Ele..., UKRI | Proposal for a Tier 2 Cen..., UKRI | Tier 2 Hub in Materials a...UKRI| ISCF Wave 1:Designing Electrodes for Na Ion Batteries via Structure Electrochemical Performance Correlations ,UKRI| Proposal for a Tier 2 Centre - HPC Midlands Plus ,UKRI| Tier 2 Hub in Materials and Molecular ModellingQiong Cai; Jian Liu; Jian Liu; Gao Qing Lu; Zhong-Shuai Wu; Yash Boyjoo; Emilia Olsson; Haodong Shi; Haodong Shi;AbstractLithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2.
Advanced Energy Mate... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202000651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Energy Mate... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202000651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Funded by:UKRI | ISCF Wave 1:Designing Ele..., UKRI | Proposal for a Tier 2 Cen..., UKRI | Tier 2 Hub in Materials a...UKRI| ISCF Wave 1:Designing Electrodes for Na Ion Batteries via Structure Electrochemical Performance Correlations ,UKRI| Proposal for a Tier 2 Centre - HPC Midlands Plus ,UKRI| Tier 2 Hub in Materials and Molecular ModellingQiong Cai; Jian Liu; Jian Liu; Gao Qing Lu; Zhong-Shuai Wu; Yash Boyjoo; Emilia Olsson; Haodong Shi; Haodong Shi;AbstractLithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2.
Advanced Energy Mate... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202000651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Energy Mate... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202000651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Royal Society of Chemistry (RSC) Jianqiang Yu; S. Ravi P. Silva; Haodong Shi; Haodong Shi; Yan Yang; Jian Liu; Jian Liu; Qinglong Liu; Qinglong Liu; Tianyu Yang; Zhong-Shuai Wu;doi: 10.1039/c9ta00240e
N-doped carbon-MoS2 (NC-MoS2) nanocomposites, including dual–shell, yolk–shell, core–shell, hollow and nanorods, were obtained using a sequential cooperative self-assembly approach. The hollow NC-MoS2 nanocomposites showed enhanced Li-ion storage performance compared to the dual–shell and yolk–shell nanostructures.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta00240e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta00240e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Royal Society of Chemistry (RSC) Jianqiang Yu; S. Ravi P. Silva; Haodong Shi; Haodong Shi; Yan Yang; Jian Liu; Jian Liu; Qinglong Liu; Qinglong Liu; Tianyu Yang; Zhong-Shuai Wu;doi: 10.1039/c9ta00240e
N-doped carbon-MoS2 (NC-MoS2) nanocomposites, including dual–shell, yolk–shell, core–shell, hollow and nanorods, were obtained using a sequential cooperative self-assembly approach. The hollow NC-MoS2 nanocomposites showed enhanced Li-ion storage performance compared to the dual–shell and yolk–shell nanostructures.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta00240e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta00240e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Cameron Alexander Hurd Price; Cameron Alexander Hurd Price; Jian Liu; Jian Liu; Baojiang Jiang; Ying Xie; Yanqing Jiao; Dan Wang; Xudong Xiao; Liping Zhang; Qi Li; Chen Zhao;doi: 10.1039/c9ta10688j
Three-dimensional assembly of carbon nitride tube was obtained from supramolecular precursor. The special morphology and triazole ring group modification endowed materials' enhanced photocatalytic hydrogen evolution property (71 mmol g−1 h−1).
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta10688j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta10688j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Cameron Alexander Hurd Price; Cameron Alexander Hurd Price; Jian Liu; Jian Liu; Baojiang Jiang; Ying Xie; Yanqing Jiao; Dan Wang; Xudong Xiao; Liping Zhang; Qi Li; Chen Zhao;doi: 10.1039/c9ta10688j
Three-dimensional assembly of carbon nitride tube was obtained from supramolecular precursor. The special morphology and triazole ring group modification endowed materials' enhanced photocatalytic hydrogen evolution property (71 mmol g−1 h−1).
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta10688j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta10688j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Royal Society of Chemistry (RSC) Wu, X.; Liu, Jian; Chen, Z.; Yang, Q.; Li, C.; Lu, G.; Wang, L.;doi: 10.1039/c2jm16762j
handle: 20.500.11937/18394
Mesoporous TiO2 nanocrystals (denoted as TiO2-MS) have been synthesised by a one-step amino acid assisted synthesis method using L-lysine as a catalyst. An ∼18% enhancement in dye-sensitized solar cells’ (DSSCs) conversion efficiency was achieved using the TiO2-MS as photoanodes compared to that of benchmark Degussa P25 TiO2. The improved dye loading capacity and reduced charge recombination of TiO2-MS are responsible for the enhanced performance.
Journal of Materials... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2jm16762j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2jm16762j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Royal Society of Chemistry (RSC) Wu, X.; Liu, Jian; Chen, Z.; Yang, Q.; Li, C.; Lu, G.; Wang, L.;doi: 10.1039/c2jm16762j
handle: 20.500.11937/18394
Mesoporous TiO2 nanocrystals (denoted as TiO2-MS) have been synthesised by a one-step amino acid assisted synthesis method using L-lysine as a catalyst. An ∼18% enhancement in dye-sensitized solar cells’ (DSSCs) conversion efficiency was achieved using the TiO2-MS as photoanodes compared to that of benchmark Degussa P25 TiO2. The improved dye loading capacity and reduced charge recombination of TiO2-MS are responsible for the enhanced performance.
Journal of Materials... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2jm16762j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2jm16762j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Novel carbon dioxide tole...ARC| Novel carbon dioxide tolerant ceramic membranes for oxygen separation to improve the viability of clean energy technologyXiuxia Meng; Yongna Liu; Naitao Yang; Xiaoyao Tan; Jian Liu; João C. Diniz da Costa; Shaomin Liu;handle: 20.500.11937/56859
Abstract The future clean energy deployment in our contemporary society needs the innovative use of emerging technologies in the coal industry, like the integrated gasification combined cycle (IGCC) integrated with solid oxide cell technology for flexible electricity generation and chemical production. For this purpose, a cell design with a high volumetric power density and a compact size for gas production is an important consideration for cheaper and simpler integration. In this study, robust and compact hollow fiber solid oxide cells with an integrated electrolyte and cathode structure were designed. The peak power density achieved was up to 516 mW cm−2 at 850 °C, using hydrogen as the fuel and air as the oxidant. In the Solid Oxide Electrolysis Cell (SOEC) mode, the steam electrolysis can be carried out at high applied voltage, up to 2.0 V, and operated at 850 °C to achieve high electrolysis efficiencies. A stable hydrogen and oxygen production rate with the respective flux rates of 14.5 and 6.5 mL min−1 cm−2 are achieved. Successful development of strategies for the synthesis of robust hollow fiber solid oxide cells would be a great step moving forward towards the large scale commercial application in future advanced energy technologies.
Applied Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Novel carbon dioxide tole...ARC| Novel carbon dioxide tolerant ceramic membranes for oxygen separation to improve the viability of clean energy technologyXiuxia Meng; Yongna Liu; Naitao Yang; Xiaoyao Tan; Jian Liu; João C. Diniz da Costa; Shaomin Liu;handle: 20.500.11937/56859
Abstract The future clean energy deployment in our contemporary society needs the innovative use of emerging technologies in the coal industry, like the integrated gasification combined cycle (IGCC) integrated with solid oxide cell technology for flexible electricity generation and chemical production. For this purpose, a cell design with a high volumetric power density and a compact size for gas production is an important consideration for cheaper and simpler integration. In this study, robust and compact hollow fiber solid oxide cells with an integrated electrolyte and cathode structure were designed. The peak power density achieved was up to 516 mW cm−2 at 850 °C, using hydrogen as the fuel and air as the oxidant. In the Solid Oxide Electrolysis Cell (SOEC) mode, the steam electrolysis can be carried out at high applied voltage, up to 2.0 V, and operated at 850 °C to achieve high electrolysis efficiencies. A stable hydrogen and oxygen production rate with the respective flux rates of 14.5 and 6.5 mL min−1 cm−2 are achieved. Successful development of strategies for the synthesis of robust hollow fiber solid oxide cells would be a great step moving forward towards the large scale commercial application in future advanced energy technologies.
Applied Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, France, AustraliaPublisher:Elsevier BV Vishnu Pareek; Mietek Jaroniec; Hua Zhong; Hao Tian; Jean-François Lamonier; San Ping Jiang; Yi Cheng; Jian Liu; Yash Boyjoo; Yash Boyjoo; Jian Pan;handle: 20.500.11937/50775
Abstract We herein report the synthesis of heteroatoms doped, high surface area microporous activated carbons (AC) by utilisation of Coca Cola® as a potential source of waste biomass, for applications as CO2 adsorbent and electrodes of supercapacitors. N, S dual doped carbon spheres are firstly obtained by hydrothermal treatment of Coca Cola® and then thermally activated by either KOH or ZnCl2. The resulting KOH activated carbon material (CMC-3) exhibits extremely high adsorption capability for CO2 with 5.22 mmol g−1 at 25 °C and 1 atm, one of the highest values ever recorded for a carbonaceous material. On the other hand, ZnCl2 activated carbon material (CMC-2) performs excellently as an electrode for supercapacitor, exhibiting very high specific capacitance of 352.7 F g−1 at a current density of 1 A g−1 in 6 M KOH electrolyte, which again is one of the highest values recorded for a biomass derived AC. Coca Cola® has high content in carbon as sugars, provides in-situ doping of O, N and S and has constant composition, as opposed to other conventional biomass materials, making it an attractive and cheap alternative for synthesis of high performance AC for environmental and energy storage purposes.
Hyper Article en Lig... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbon.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu197 citations 197 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbon.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, France, AustraliaPublisher:Elsevier BV Vishnu Pareek; Mietek Jaroniec; Hua Zhong; Hao Tian; Jean-François Lamonier; San Ping Jiang; Yi Cheng; Jian Liu; Yash Boyjoo; Yash Boyjoo; Jian Pan;handle: 20.500.11937/50775
Abstract We herein report the synthesis of heteroatoms doped, high surface area microporous activated carbons (AC) by utilisation of Coca Cola® as a potential source of waste biomass, for applications as CO2 adsorbent and electrodes of supercapacitors. N, S dual doped carbon spheres are firstly obtained by hydrothermal treatment of Coca Cola® and then thermally activated by either KOH or ZnCl2. The resulting KOH activated carbon material (CMC-3) exhibits extremely high adsorption capability for CO2 with 5.22 mmol g−1 at 25 °C and 1 atm, one of the highest values ever recorded for a carbonaceous material. On the other hand, ZnCl2 activated carbon material (CMC-2) performs excellently as an electrode for supercapacitor, exhibiting very high specific capacitance of 352.7 F g−1 at a current density of 1 A g−1 in 6 M KOH electrolyte, which again is one of the highest values recorded for a biomass derived AC. Coca Cola® has high content in carbon as sugars, provides in-situ doping of O, N and S and has constant composition, as opposed to other conventional biomass materials, making it an attractive and cheap alternative for synthesis of high performance AC for environmental and energy storage purposes.
Hyper Article en Lig... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbon.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu197 citations 197 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbon.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Feilong Gong; Yong-Hui Zhang; Ke-Feng Xie; Mengmeng Liu; Lihua Gong; Erchao Meng; Guang Zeng; Sheng Ye; Jian Liu; Jian Liu; Jiangwei Zhang; Panpan Su;Abstract Oxygen evolution reaction (OER) is considered as the bottleneck of electrochemical water splitting. Molybdenum disulfide (MoS2) with layered structure has great potential in utilization as OER catalyst. However, lower OER activity of MoS2-based catalysts compared with commercial IrO2 catalysts limited their practical applications. Here, we report the synthesis of monodispersed and uniform yolk-shell structured MoS2 nanoreactors (O–MoS2@Pt) with size distribution of 563 ± 14.8 nm through an oil-water microemulsion method. Interestingly, sulfur vacancy caused by oxygen doping could guide the Pt anchoring to generate uniform nanoparticles (ca. 10.9 nm) onto outer shell. Electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), and X-ray absorption fine structure (XAFS) are employed to synergistically investigate the anchor mechanism. The O–MoS2@Pt nanoreactor with highly activated basal plane and interface presented an overpotential of 244 mV at 10 mA/cm2, and a low Tafel slope of 53 mV/dec, which was much better than commercial IrO2 and most MoS2-based catalysts. Due to the prevention of agglomeration, enhanced mechanical stability, and regulation of gas release, all the developed yolk-shell structured nanoreactors exhibited negligible change of nanostructures and overpotentials after continuous cycling measurements for 24 h. In-situ XRD measurements indicated the endurability of the overall nanoreactor during the OER process. Density functional theory calculations revealed electron structures and thermodynamic reaction barriers can be efficiently modulated through introducing vacancy and Pt nanoparticles decorating, leading to highly improved OER activity. Our findings shed a light on the design of highly active catalyst for electrocatalytic water splitting through modulating electron structures and thermodynamic reaction barriers.
Nano Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nano Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Feilong Gong; Yong-Hui Zhang; Ke-Feng Xie; Mengmeng Liu; Lihua Gong; Erchao Meng; Guang Zeng; Sheng Ye; Jian Liu; Jian Liu; Jiangwei Zhang; Panpan Su;Abstract Oxygen evolution reaction (OER) is considered as the bottleneck of electrochemical water splitting. Molybdenum disulfide (MoS2) with layered structure has great potential in utilization as OER catalyst. However, lower OER activity of MoS2-based catalysts compared with commercial IrO2 catalysts limited their practical applications. Here, we report the synthesis of monodispersed and uniform yolk-shell structured MoS2 nanoreactors (O–MoS2@Pt) with size distribution of 563 ± 14.8 nm through an oil-water microemulsion method. Interestingly, sulfur vacancy caused by oxygen doping could guide the Pt anchoring to generate uniform nanoparticles (ca. 10.9 nm) onto outer shell. Electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), and X-ray absorption fine structure (XAFS) are employed to synergistically investigate the anchor mechanism. The O–MoS2@Pt nanoreactor with highly activated basal plane and interface presented an overpotential of 244 mV at 10 mA/cm2, and a low Tafel slope of 53 mV/dec, which was much better than commercial IrO2 and most MoS2-based catalysts. Due to the prevention of agglomeration, enhanced mechanical stability, and regulation of gas release, all the developed yolk-shell structured nanoreactors exhibited negligible change of nanostructures and overpotentials after continuous cycling measurements for 24 h. In-situ XRD measurements indicated the endurability of the overall nanoreactor during the OER process. Density functional theory calculations revealed electron structures and thermodynamic reaction barriers can be efficiently modulated through introducing vacancy and Pt nanoparticles decorating, leading to highly improved OER activity. Our findings shed a light on the design of highly active catalyst for electrocatalytic water splitting through modulating electron structures and thermodynamic reaction barriers.
Nano Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nano Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Royal Society of Chemistry (RSC) Mietek Jaroniec; Jian Liu; Ji Liang; Ji Liang; Yao Zheng; Shi-Zhang Qiao; Shi-Zhang Qiao;doi: 10.1039/c2ee03479d
handle: 20.500.11937/46237 , 2440/73519
Graphitic carbon nitrides (g-C3N4) are becoming increasingly significant due to the theoretical prediction of their unusual properties and promising applications ranging from photocatalysis, heterogeneous catalysis, to fuel cells. Recently, a variety of nanostructured and nanoporous g-C3N4 materials have been developed for a wide range of new applications. This feature article gives, at first, an overview on the synthesis of g-C3N4 nanomaterials with controllable structure and morphology, and secondly, presents and categorizes applications of g-C3N4 as multifunctional metal-free catalysts for environmental protection, energy conversion and storage. A special emphasis is placed on the potential applications of nanostructured g-C3N4 in the areas of artificial photocatalysis for hydrogen production, oxygen reduction reaction (ORR) for fuel cells, and metal-free heterogeneous catalysis. Finally, this perspective highlights crucial issues that should be addressed in the future in the aforementioned exciting research areas.
Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03479d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,612 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03479d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Royal Society of Chemistry (RSC) Mietek Jaroniec; Jian Liu; Ji Liang; Ji Liang; Yao Zheng; Shi-Zhang Qiao; Shi-Zhang Qiao;doi: 10.1039/c2ee03479d
handle: 20.500.11937/46237 , 2440/73519
Graphitic carbon nitrides (g-C3N4) are becoming increasingly significant due to the theoretical prediction of their unusual properties and promising applications ranging from photocatalysis, heterogeneous catalysis, to fuel cells. Recently, a variety of nanostructured and nanoporous g-C3N4 materials have been developed for a wide range of new applications. This feature article gives, at first, an overview on the synthesis of g-C3N4 nanomaterials with controllable structure and morphology, and secondly, presents and categorizes applications of g-C3N4 as multifunctional metal-free catalysts for environmental protection, energy conversion and storage. A special emphasis is placed on the potential applications of nanostructured g-C3N4 in the areas of artificial photocatalysis for hydrogen production, oxygen reduction reaction (ORR) for fuel cells, and metal-free heterogeneous catalysis. Finally, this perspective highlights crucial issues that should be addressed in the future in the aforementioned exciting research areas.
Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03479d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,612 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03479d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Jian Liu; Jian Liu; Peiyuan Wang; Xiaoxuan Lu; Xiaorong Wei; Shumin Sun; Yong-Hui Zhang; Yash Boyjoo; Dongjie Guo;Abstract The lamellar transition metal oxides, sulfides and carbides with expanded interlayer spacing have attracted wide attention due to their enlargeable interlayer diffusion channels and larger contact areas. However, the existence of pillars between the interlayer would occupy the inter layer voids, which would hinder the accommodation of more lithium ion, sodium ion and so on. Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing was prepared by sintering the pre-intercalated pristine Ti3C2 with TMAOH under N2 atmosphere. The obtained TiO2/Ti3C2 composite showed remarkable capacity (237.8 mAh g−1 at 100 mA g−1) and long-term stability (153 mAh g−1after 100 cycles at current density of 600 mA g−1) as anode material for sodium ion batteries. These remarkable electrochemical properties of pillar-free TiO2/Ti3C2 were ascribed to its effective expanded interlayer distance fixed by TiO2 nanoparticles attached on the edge plane of Ti3C2, pseudocapacitance contribution of TiO2 nanoparticles, and the synergistic effect between TiO2 and Ti3C2. This work offered a general strategy for fabricating pillar-free MXene-based composites with enlarged interlayer spacing.
Journal of Power Sou... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.227756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Power Sou... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.227756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Jian Liu; Jian Liu; Peiyuan Wang; Xiaoxuan Lu; Xiaorong Wei; Shumin Sun; Yong-Hui Zhang; Yash Boyjoo; Dongjie Guo;Abstract The lamellar transition metal oxides, sulfides and carbides with expanded interlayer spacing have attracted wide attention due to their enlargeable interlayer diffusion channels and larger contact areas. However, the existence of pillars between the interlayer would occupy the inter layer voids, which would hinder the accommodation of more lithium ion, sodium ion and so on. Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing was prepared by sintering the pre-intercalated pristine Ti3C2 with TMAOH under N2 atmosphere. The obtained TiO2/Ti3C2 composite showed remarkable capacity (237.8 mAh g−1 at 100 mA g−1) and long-term stability (153 mAh g−1after 100 cycles at current density of 600 mA g−1) as anode material for sodium ion batteries. These remarkable electrochemical properties of pillar-free TiO2/Ti3C2 were ascribed to its effective expanded interlayer distance fixed by TiO2 nanoparticles attached on the edge plane of Ti3C2, pseudocapacitance contribution of TiO2 nanoparticles, and the synergistic effect between TiO2 and Ti3C2. This work offered a general strategy for fabricating pillar-free MXene-based composites with enlarged interlayer spacing.
Journal of Power Sou... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.227756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Power Sou... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2020.227756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Jiali Liu; Jiali Liu; Qihua Yang; Chunzhi Li; Chunzhi Li; Haoran Liu; Haoran Liu; He Li; Jian Liu;doi: 10.1039/d0ta06442d
COF and TiO2 core–shell structured heterojunctions with the spatial location of two semiconductors either in the core or on the shell are precisely designed.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta06442d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta06442d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Jiali Liu; Jiali Liu; Qihua Yang; Chunzhi Li; Chunzhi Li; Haoran Liu; Haoran Liu; He Li; Jian Liu;doi: 10.1039/d0ta06442d
COF and TiO2 core–shell structured heterojunctions with the spatial location of two semiconductors either in the core or on the shell are precisely designed.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta06442d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta06442d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Funded by:UKRI | ISCF Wave 1:Designing Ele..., UKRI | Proposal for a Tier 2 Cen..., UKRI | Tier 2 Hub in Materials a...UKRI| ISCF Wave 1:Designing Electrodes for Na Ion Batteries via Structure Electrochemical Performance Correlations ,UKRI| Proposal for a Tier 2 Centre - HPC Midlands Plus ,UKRI| Tier 2 Hub in Materials and Molecular ModellingQiong Cai; Jian Liu; Jian Liu; Gao Qing Lu; Zhong-Shuai Wu; Yash Boyjoo; Emilia Olsson; Haodong Shi; Haodong Shi;AbstractLithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2.
Advanced Energy Mate... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202000651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Energy Mate... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202000651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Funded by:UKRI | ISCF Wave 1:Designing Ele..., UKRI | Proposal for a Tier 2 Cen..., UKRI | Tier 2 Hub in Materials a...UKRI| ISCF Wave 1:Designing Electrodes for Na Ion Batteries via Structure Electrochemical Performance Correlations ,UKRI| Proposal for a Tier 2 Centre - HPC Midlands Plus ,UKRI| Tier 2 Hub in Materials and Molecular ModellingQiong Cai; Jian Liu; Jian Liu; Gao Qing Lu; Zhong-Shuai Wu; Yash Boyjoo; Emilia Olsson; Haodong Shi; Haodong Shi;AbstractLithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1−xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1−xS‐NC) is proposed. Fe1−xS‐NC has a high specific surface area (627 m2 g−1), large pore volume (0.41 cm3 g−1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1−xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1−xS‐NC is thoroughly verified. The results confirm Fe1−xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1−xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g−1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm−2.
Advanced Energy Mate... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202000651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Energy Mate... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aenm.202000651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Royal Society of Chemistry (RSC) Jianqiang Yu; S. Ravi P. Silva; Haodong Shi; Haodong Shi; Yan Yang; Jian Liu; Jian Liu; Qinglong Liu; Qinglong Liu; Tianyu Yang; Zhong-Shuai Wu;doi: 10.1039/c9ta00240e
N-doped carbon-MoS2 (NC-MoS2) nanocomposites, including dual–shell, yolk–shell, core–shell, hollow and nanorods, were obtained using a sequential cooperative self-assembly approach. The hollow NC-MoS2 nanocomposites showed enhanced Li-ion storage performance compared to the dual–shell and yolk–shell nanostructures.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta00240e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta00240e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Royal Society of Chemistry (RSC) Jianqiang Yu; S. Ravi P. Silva; Haodong Shi; Haodong Shi; Yan Yang; Jian Liu; Jian Liu; Qinglong Liu; Qinglong Liu; Tianyu Yang; Zhong-Shuai Wu;doi: 10.1039/c9ta00240e
N-doped carbon-MoS2 (NC-MoS2) nanocomposites, including dual–shell, yolk–shell, core–shell, hollow and nanorods, were obtained using a sequential cooperative self-assembly approach. The hollow NC-MoS2 nanocomposites showed enhanced Li-ion storage performance compared to the dual–shell and yolk–shell nanostructures.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta00240e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta00240e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Cameron Alexander Hurd Price; Cameron Alexander Hurd Price; Jian Liu; Jian Liu; Baojiang Jiang; Ying Xie; Yanqing Jiao; Dan Wang; Xudong Xiao; Liping Zhang; Qi Li; Chen Zhao;doi: 10.1039/c9ta10688j
Three-dimensional assembly of carbon nitride tube was obtained from supramolecular precursor. The special morphology and triazole ring group modification endowed materials' enhanced photocatalytic hydrogen evolution property (71 mmol g−1 h−1).
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta10688j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta10688j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Cameron Alexander Hurd Price; Cameron Alexander Hurd Price; Jian Liu; Jian Liu; Baojiang Jiang; Ying Xie; Yanqing Jiao; Dan Wang; Xudong Xiao; Liping Zhang; Qi Li; Chen Zhao;doi: 10.1039/c9ta10688j
Three-dimensional assembly of carbon nitride tube was obtained from supramolecular precursor. The special morphology and triazole ring group modification endowed materials' enhanced photocatalytic hydrogen evolution property (71 mmol g−1 h−1).
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta10688j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ta10688j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Royal Society of Chemistry (RSC) Wu, X.; Liu, Jian; Chen, Z.; Yang, Q.; Li, C.; Lu, G.; Wang, L.;doi: 10.1039/c2jm16762j
handle: 20.500.11937/18394
Mesoporous TiO2 nanocrystals (denoted as TiO2-MS) have been synthesised by a one-step amino acid assisted synthesis method using L-lysine as a catalyst. An ∼18% enhancement in dye-sensitized solar cells’ (DSSCs) conversion efficiency was achieved using the TiO2-MS as photoanodes compared to that of benchmark Degussa P25 TiO2. The improved dye loading capacity and reduced charge recombination of TiO2-MS are responsible for the enhanced performance.
Journal of Materials... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2jm16762j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2jm16762j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Royal Society of Chemistry (RSC) Wu, X.; Liu, Jian; Chen, Z.; Yang, Q.; Li, C.; Lu, G.; Wang, L.;doi: 10.1039/c2jm16762j
handle: 20.500.11937/18394
Mesoporous TiO2 nanocrystals (denoted as TiO2-MS) have been synthesised by a one-step amino acid assisted synthesis method using L-lysine as a catalyst. An ∼18% enhancement in dye-sensitized solar cells’ (DSSCs) conversion efficiency was achieved using the TiO2-MS as photoanodes compared to that of benchmark Degussa P25 TiO2. The improved dye loading capacity and reduced charge recombination of TiO2-MS are responsible for the enhanced performance.
Journal of Materials... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2jm16762j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2jm16762j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Novel carbon dioxide tole...ARC| Novel carbon dioxide tolerant ceramic membranes for oxygen separation to improve the viability of clean energy technologyXiuxia Meng; Yongna Liu; Naitao Yang; Xiaoyao Tan; Jian Liu; João C. Diniz da Costa; Shaomin Liu;handle: 20.500.11937/56859
Abstract The future clean energy deployment in our contemporary society needs the innovative use of emerging technologies in the coal industry, like the integrated gasification combined cycle (IGCC) integrated with solid oxide cell technology for flexible electricity generation and chemical production. For this purpose, a cell design with a high volumetric power density and a compact size for gas production is an important consideration for cheaper and simpler integration. In this study, robust and compact hollow fiber solid oxide cells with an integrated electrolyte and cathode structure were designed. The peak power density achieved was up to 516 mW cm−2 at 850 °C, using hydrogen as the fuel and air as the oxidant. In the Solid Oxide Electrolysis Cell (SOEC) mode, the steam electrolysis can be carried out at high applied voltage, up to 2.0 V, and operated at 850 °C to achieve high electrolysis efficiencies. A stable hydrogen and oxygen production rate with the respective flux rates of 14.5 and 6.5 mL min−1 cm−2 are achieved. Successful development of strategies for the synthesis of robust hollow fiber solid oxide cells would be a great step moving forward towards the large scale commercial application in future advanced energy technologies.
Applied Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Novel carbon dioxide tole...ARC| Novel carbon dioxide tolerant ceramic membranes for oxygen separation to improve the viability of clean energy technologyXiuxia Meng; Yongna Liu; Naitao Yang; Xiaoyao Tan; Jian Liu; João C. Diniz da Costa; Shaomin Liu;handle: 20.500.11937/56859
Abstract The future clean energy deployment in our contemporary society needs the innovative use of emerging technologies in the coal industry, like the integrated gasification combined cycle (IGCC) integrated with solid oxide cell technology for flexible electricity generation and chemical production. For this purpose, a cell design with a high volumetric power density and a compact size for gas production is an important consideration for cheaper and simpler integration. In this study, robust and compact hollow fiber solid oxide cells with an integrated electrolyte and cathode structure were designed. The peak power density achieved was up to 516 mW cm−2 at 850 °C, using hydrogen as the fuel and air as the oxidant. In the Solid Oxide Electrolysis Cell (SOEC) mode, the steam electrolysis can be carried out at high applied voltage, up to 2.0 V, and operated at 850 °C to achieve high electrolysis efficiencies. A stable hydrogen and oxygen production rate with the respective flux rates of 14.5 and 6.5 mL min−1 cm−2 are achieved. Successful development of strategies for the synthesis of robust hollow fiber solid oxide cells would be a great step moving forward towards the large scale commercial application in future advanced energy technologies.
Applied Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, France, AustraliaPublisher:Elsevier BV Vishnu Pareek; Mietek Jaroniec; Hua Zhong; Hao Tian; Jean-François Lamonier; San Ping Jiang; Yi Cheng; Jian Liu; Yash Boyjoo; Yash Boyjoo; Jian Pan;handle: 20.500.11937/50775
Abstract We herein report the synthesis of heteroatoms doped, high surface area microporous activated carbons (AC) by utilisation of Coca Cola® as a potential source of waste biomass, for applications as CO2 adsorbent and electrodes of supercapacitors. N, S dual doped carbon spheres are firstly obtained by hydrothermal treatment of Coca Cola® and then thermally activated by either KOH or ZnCl2. The resulting KOH activated carbon material (CMC-3) exhibits extremely high adsorption capability for CO2 with 5.22 mmol g−1 at 25 °C and 1 atm, one of the highest values ever recorded for a carbonaceous material. On the other hand, ZnCl2 activated carbon material (CMC-2) performs excellently as an electrode for supercapacitor, exhibiting very high specific capacitance of 352.7 F g−1 at a current density of 1 A g−1 in 6 M KOH electrolyte, which again is one of the highest values recorded for a biomass derived AC. Coca Cola® has high content in carbon as sugars, provides in-situ doping of O, N and S and has constant composition, as opposed to other conventional biomass materials, making it an attractive and cheap alternative for synthesis of high performance AC for environmental and energy storage purposes.
Hyper Article en Lig... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbon.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu197 citations 197 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbon.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, France, AustraliaPublisher:Elsevier BV Vishnu Pareek; Mietek Jaroniec; Hua Zhong; Hao Tian; Jean-François Lamonier; San Ping Jiang; Yi Cheng; Jian Liu; Yash Boyjoo; Yash Boyjoo; Jian Pan;handle: 20.500.11937/50775
Abstract We herein report the synthesis of heteroatoms doped, high surface area microporous activated carbons (AC) by utilisation of Coca Cola® as a potential source of waste biomass, for applications as CO2 adsorbent and electrodes of supercapacitors. N, S dual doped carbon spheres are firstly obtained by hydrothermal treatment of Coca Cola® and then thermally activated by either KOH or ZnCl2. The resulting KOH activated carbon material (CMC-3) exhibits extremely high adsorption capability for CO2 with 5.22 mmol g−1 at 25 °C and 1 atm, one of the highest values ever recorded for a carbonaceous material. On the other hand, ZnCl2 activated carbon material (CMC-2) performs excellently as an electrode for supercapacitor, exhibiting very high specific capacitance of 352.7 F g−1 at a current density of 1 A g−1 in 6 M KOH electrolyte, which again is one of the highest values recorded for a biomass derived AC. Coca Cola® has high content in carbon as sugars, provides in-situ doping of O, N and S and has constant composition, as opposed to other conventional biomass materials, making it an attractive and cheap alternative for synthesis of high performance AC for environmental and energy storage purposes.
Hyper Article en Lig... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbon.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu197 citations 197 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.carbon.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Feilong Gong; Yong-Hui Zhang; Ke-Feng Xie; Mengmeng Liu; Lihua Gong; Erchao Meng; Guang Zeng; Sheng Ye; Jian Liu; Jian Liu; Jiangwei Zhang; Panpan Su;Abstract Oxygen evolution reaction (OER) is considered as the bottleneck of electrochemical water splitting. Molybdenum disulfide (MoS2) with layered structure has great potential in utilization as OER catalyst. However, lower OER activity of MoS2-based catalysts compared with commercial IrO2 catalysts limited their practical applications. Here, we report the synthesis of monodispersed and uniform yolk-shell structured MoS2 nanoreactors (O–MoS2@Pt) with size distribution of 563 ± 14.8 nm through an oil-water microemulsion method. Interestingly, sulfur vacancy caused by oxygen doping could guide the Pt anchoring to generate uniform nanoparticles (ca. 10.9 nm) onto outer shell. Electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), and X-ray absorption fine structure (XAFS) are employed to synergistically investigate the anchor mechanism. The O–MoS2@Pt nanoreactor with highly activated basal plane and interface presented an overpotential of 244 mV at 10 mA/cm2, and a low Tafel slope of 53 mV/dec, which was much better than commercial IrO2 and most MoS2-based catalysts. Due to the prevention of agglomeration, enhanced mechanical stability, and regulation of gas release, all the developed yolk-shell structured nanoreactors exhibited negligible change of nanostructures and overpotentials after continuous cycling measurements for 24 h. In-situ XRD measurements indicated the endurability of the overall nanoreactor during the OER process. Density functional theory calculations revealed electron structures and thermodynamic reaction barriers can be efficiently modulated through introducing vacancy and Pt nanoparticles decorating, leading to highly improved OER activity. Our findings shed a light on the design of highly active catalyst for electrocatalytic water splitting through modulating electron structures and thermodynamic reaction barriers.
Nano Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nano Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Feilong Gong; Yong-Hui Zhang; Ke-Feng Xie; Mengmeng Liu; Lihua Gong; Erchao Meng; Guang Zeng; Sheng Ye; Jian Liu; Jian Liu; Jiangwei Zhang; Panpan Su;Abstract Oxygen evolution reaction (OER) is considered as the bottleneck of electrochemical water splitting. Molybdenum disulfide (MoS2) with layered structure has great potential in utilization as OER catalyst. However, lower OER activity of MoS2-based catalysts compared with commercial IrO2 catalysts limited their practical applications. Here, we report the synthesis of monodispersed and uniform yolk-shell structured MoS2 nanoreactors (O–MoS2@Pt) with size distribution of 563 ± 14.8 nm through an oil-water microemulsion method. Interestingly, sulfur vacancy caused by oxygen doping could guide the Pt anchoring to generate uniform nanoparticles (ca. 10.9 nm) onto outer shell. Electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), and X-ray absorption fine structure (XAFS) are employed to synergistically investigate the anchor mechanism. The O–MoS2@Pt nanoreactor with highly activated basal plane and interface presented an overpotential of 244 mV at 10 mA/cm2, and a low Tafel slope of 53 mV/dec, which was much better than commercial IrO2 and most MoS2-based catalysts. Due to the prevention of agglomeration, enhanced mechanical stability, and regulation of gas release, all the developed yolk-shell structured nanoreactors exhibited negligible change of nanostructures and overpotentials after continuous cycling measurements for 24 h. In-situ XRD measurements indicated the endurability of the overall nanoreactor during the OER process. Density functional theory calculations revealed electron structures and thermodynamic reaction barriers can be efficiently modulated through introducing vacancy and Pt nanoparticles decorating, leading to highly improved OER activity. Our findings shed a light on the design of highly active catalyst for electrocatalytic water splitting through modulating electron structures and thermodynamic reaction barriers.
Nano Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nano Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2020.105284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Royal Society of Chemistry (RSC) Mietek Jaroniec; Jian Liu; Ji Liang; Ji Liang; Yao Zheng; Shi-Zhang Qiao; Shi-Zhang Qiao;doi: 10.1039/c2ee03479d
handle: 20.500.11937/46237 , 2440/73519
Graphitic carbon nitrides (g-C3N4) are becoming increasingly significant due to the theoretical prediction of their unusual properties and promising applications ranging from photocatalysis, heterogeneous catalysis, to fuel cells. Recently, a variety of nanostructured and nanoporous g-C3N4 materials have been developed for a wide range of new applications. This feature article gives, at first, an overview on the synthesis of g-C3N4 nanomaterials with controllable structure and morphology, and secondly, presents and categorizes applications of g-C3N4 as multifunctional metal-free catalysts for environmental protection, energy conversion and storage. A special emphasis is placed on the potential applications of nanostructured g-C3N4 in the areas of artificial photocatalysis for hydrogen production, oxygen reduction reaction (ORR) for fuel cells, and metal-free heterogeneous catalysis. Finally, this perspective highlights crucial issues that should be addressed in the future in the aforementioned exciting research areas.
Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03479d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,612 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03479d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Royal Society of Chemistry (RSC) Mietek Jaroniec; Jian Liu; Ji Liang; Ji Liang; Yao Zheng; Shi-Zhang Qiao; Shi-Zhang Qiao;doi: 10.1039/c2ee03479d
handle: 20.500.11937/46237 , 2440/73519
Graphitic carbon nitrides (g-C3N4) are becoming increasingly significant due to the theoretical prediction of their unusual properties and promising applications ranging from photocatalysis, heterogeneous catalysis, to fuel cells. Recently, a variety of nanostructured and nanoporous g-C3N4 materials have been developed for a wide range of new applications. This feature article gives, at first, an overview on the synthesis of g-C3N4 nanomaterials with controllable structure and morphology, and secondly, presents and categorizes applications of g-C3N4 as multifunctional metal-free catalysts for environmental protection, energy conversion and storage. A special emphasis is placed on the potential applications of nanostructured g-C3N4 in the areas of artificial photocatalysis for hydrogen production, oxygen reduction reaction (ORR) for fuel cells, and metal-free heterogeneous catalysis. Finally, this perspective highlights crucial issues that should be addressed in the future in the aforementioned exciting research areas.
Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03479d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,612 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03479d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu