- home
- Advanced Search
Filters
Year range
-chevron_right GOFunder
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2022 Saudi ArabiaPublisher:Zenodo Garrabou, Joaquim; Gómez-Gras, Daniel; Medrano, Alba; Cerrano, Carlo; Ponti, Massimo; Schlegel, Robert; Bensoussan, Nathaniel; Turicchia, Eva; Sini, Maria; Gerovasileiou, Vasilis; Teixido, Nuria; Mirasole, Alice; Tamburello, Laura; Cebrian, Emma; Rilov, Gil; Ledoux, Jean-Baptiste; Souissi, Jamila Ben; Khamassi, Faten; Ghanem, Raouia; Benabdi, Mouloud; Grimes, Samir; Ocaña, Oscar; Bazairi, Hocein; Hereu, Bernat; Linares, Cristina; Kersting, Diego Kurt; la Rovira, Graciel; Ortega, Júlia; Casals, David; Pagès-Escolà, Marta; Margarit, Núria; Capdevila, Pol; Verdura, Jana; Ramos, Alfonso; Izquierdo, Andres; Barbera, Carmen; Rubio-Portillo, Esther; Anton, Irene; López-Sendino, Paula; Díaz, David; Vazquez-Luis, Maite; Duarte, Carlos M.; Marbà, Núria; Aspillaga, Eneko; Espinosa, Free; Grech, Daniele; Guala, Ivan; Azzurro, Ernesto; Farina, Simone; Cristina Gambi, Maria; Chimienti, Giovanni; Montefalcone, Monica; Azzola, Annalisa; Mantas, Torcuato Pulido; Fraschetti, Simonetta; Ceccherelli, Giulia; Kipson, Silvija; Bakran-Petricioli, Tatjana; Petricioli, Donat; Jimenez, Carlos; Katsanevakis, Stelios; Kizilkaya, Inci Tuney; Kizilkaya, Zafer; Sartoretto, Stephane; Elodie, Rouanet; Ruitton, Sandrine; Comeau, S.; Gattuso, Jean-Pierre; Harmelin, Jean-Georges;handle: 10754/687162
This upload contains three datasets in CSV files and a PDF file with the specific description of the CSV files. These data was used for the analysis of the mass mortality events reported during the period 2015-2019 across the Mediterranean. The datasets are 1) a CSV file with the data used for the description of the spatial-temporal, depth and biological patterns of mortality observed in the Mediterranean Sea in the 2015-2019 period; 2) a CSV file with the data used to conduct the analyses on the relationship between marine heatwaves (MHW) days found on the surface (averaged per monitored area and year) and the corresponding mass mortality incidence of benthic organisms; 3) a CSV file with the data used to conduct the analyses on the relationship between in-situ MHW days (averaged per monitored area, depth and year) and the corresponding mass mortality incidence. Data were obtained through benthic community field surveys conducted by 33 research teams from 11 Mediterranean countries. Surveys covered thousands of kms of coastline, spanning 13º of latitude (32 °S to 45 °N) and 40º of longitude (-5°W to 35°E) in the Mediterranean Sea. The dataset provides the most updated inventory of mass mortality events records for benthic species between 2015-2019 in the region. The surveys were conducted in 142 monitoring areas. Monitoring areas were considered as geographic areas (10-25 km coastline, e.g., a marine protected area and the nearby coast) sharing common environmental features. In situ temperature conditions datasets base consists of high frequency (hourly) time series obtained using HOBO data loggers (accuracy ± 0.21°C) set-up at standard depths along rocky walls by divers, generally every 5 m from the surface to 40 m depth.This dataset as in the case of the mortality was assembled under the T-MEDNet initiative (www.t-mednet.org). Satellite derived sea surface temperature (SST) across the Mediterranean Sea was obtained from CMEMS (https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SST_MED_SST_L4_REP_OBSERVATIONS_010_021). The data consists of daily (night-time), gap free, optimally interpolated foundation SST at ~4 km resolution from AVHRR with improved accuracy and stability over the 1982-2019 period
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5877711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5877711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, Spain, FrancePublisher:Wiley Funded by:EC | DEVOTES, EC | COCONET, EC | BIOWEB +1 projectsEC| DEVOTES ,EC| COCONET ,EC| BIOWEB ,FCT| SFRH/BPD/74400/2010Salit Kark; Fiorenza Micheli; Jean-Baptiste Ledoux; Jean-Baptiste Ledoux; Tessa Mazor; Drosos Koutsoubas; Bastien Mérigot; Joachim Claudet; François Guilhaumon; Carlo Cerrano; Stelios Katsanevakis; Antonio Terlizzi; Roberto Danovaro; Roberto Danovaro; Marta Coll; Marta Coll; Serena Felline; Simonetta Fraschetti; Sylvaine Giakoumi; Sylvaine Giakoumi;doi: 10.1111/ddi.12491
handle: 10261/143578
AbstractAimBiological invasions are major contributors to global change and native biodiversity decline. However, they are overlooked in marine conservation plans. Here, we examine for the first time the extent to which marine conservation planning research has addressed (or ignored) biological invasions. Furthermore, we explore the change of spatial priorities in conservation plans when different approaches are used to incorporate the presence and impacts of invasive species.LocationGlobal analysis with a focus on the Mediterranean Sea region.MethodsWe conducted a systematic literature review consisting of three steps: (1) article selection using a search engine, (2) abstract screening and (3) review of pertinent articles, which were identified in the second step. The information extracted included the scale and geographical location of each case study as well as the approach followed regarding invasive species. We also applied the softwareMarxanto produce and compare conservation plans for the Mediterranean Sea that either protect, or avoid areas impacted by invasives, or ignore the issue. One case study focused on the protection of critical habitats, and the other on endemic fish species.ResultsWe found that of 119 papers on marine spatial plans in specific biogeographic regions, only three (2.5%) explicitly took into account invasive species. When comparing the different conservation plans for each case study, we found that the majority of selected sites for protection (ca. 80%) changed in the critical habitat case study, while this proportion was lower but substantial (27%) in the endemic fish species case study.Main conclusionsBiological invasions are being widely disregarded when planning for conservation in the marine environment across local to global scales. More explicit consideration of biological invasions can significantly alter spatial conservation priorities. Future conservation plans should explicitly account for biological invasions to optimize the selection of marine protected areas.
Diversity and Distri... arrow_drop_down Diversity and DistributionsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.12491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 37 Powered bymore_vert Diversity and Distri... arrow_drop_down Diversity and DistributionsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.12491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Wiley Aggeliki Doxa; Vasiliki Almpanidou; Stelios Katsanevakis; Ana M. Queirós; Kristin Kaschner; Cristina Garilao; Kathleen Kesner‐Reyes; Antonios D. Mazaris;doi: 10.1111/gcb.16268
pmid: 35583810
AbstractGiven the accelerating rate of biodiversity loss, the need to prioritize marine areas for protection represents a major conservation challenge. The three‐dimensionality of marine life and ecosystems is an inherent element of complexity for setting spatial conservation plans. Yet, the confidence of any recommendation largely depends on shifting climate, which triggers a global redistribution of biodiversity, suggesting the inclusion of time as a fourth dimension. Here, we developed a depth‐specific prioritization analysis to inform the design of protected areas, further including metrics of climate‐driven changes in the ocean. Climate change was captured in this analysis by considering the projected future distribution of >2000 benthic and pelagic species inhabiting the Mediterranean Sea, combined with climatic stability and heterogeneity metrics of the seascape. We identified important areas based on both biological and climatic criteria, where conservation focus should be given in priority when designing a three‐dimensional, climate‐smart protected area network. We detected spatially concise, conservation priority areas, distributed around the basin, that protected marine areas almost equally across all depth zones. Our approach highlights the importance of deep sea zones as priority areas to meet conservation targets for future marine biodiversity, while suggesting that spatial prioritization schemes, that focus on a static two‐dimensional distribution of biodiversity data, might fail to englobe both the vertical properties of species distributions and the fine and larger‐scale impacts associated with climate change.
OceanRep arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Turkey, SpainPublisher:Elsevier BV Funded by:EC | FutureMARESEC| FutureMARESAntonios D. Mazaris; Charalampos Dimitriadis; Maria Papazekou; Gail Schofield; Aggeliki Doxa; Anastasia Chatzimentor; Oguz Turkozan; Stelios Katsanevakis; Aphrodite Lioliou; Sara Abalo-Morla; Mustapha Aksissou; Antonella Arcangeli; Vincent Attard; Hedia Attia El Hili; Fabrizio Atzori; Eduardo J. Belda; Lobna Ben Nakhla; Ali A. Berbash; Karen A. Bjorndal; Annette C. Broderick; Juan A. Camiñas; Onur Candan; Luis Cardona; Ilija Cetkovic; Nabigha Dakik; Giuseppe Andrea de Lucia; Panayiotis G. Dimitrakopoulos; Salih Diryaq; Costanza Favilli; Caterina Maria Fortuna; Wayne J. Fuller; Susan Gallon; Abdulmaula Hamza; Imed Jribi; Manel Ben Ismail; Yiannis Kamarianakis; Yakup Kaska; Kastriot Korro; Drosos Koutsoubas; Giancarlo Lauriano; Bojan Lazar; David March; Adolfo Marco; Charikleia Minotou; Jonathan R. Monsinjon; Nahla M. Naguib; Andreas Palialexis; Vilma Piroli; Karaa Sami; Bektaş Sönmez; Laurent Sourbès; Doğan Sözbilen; Frederic Vandeperre; Pierre Vignes; Michail Xanthakis; Vera Köpsel; Myron A. Peck;As climate-related impacts threaten marine biodiversity globally, it is important to adjust conservation efforts to mitigate the effects of climate change. Translating scientific knowledge into practical management, however, is often complicated due to resource, economic and policy constraints, generating a knowledge-action gap. To develop potential solutions for marine turtle conservation, we explored the perceptions of key actors across 18 countries in the Mediterranean. These actors evaluated their perceived relative importance of 19 adaptation and mitigation measures that could safeguard marine turtles from climate change. Of importance, despite differences in expertise, experience and focal country, the perceptions of researchers and management practitioners largely converged with respect to prioritizing adaptation and mitigation measures. Climate change was considered to have the greatest impacts on offspring sex ratios and suitable nesting sites. The most viable adaptation/mitigation measures were considered to be reducing other pressures that act in parallel to climate change. Ecological effectiveness represented a key determinant for implementing proposed measures, followed by practical applicability, financial cost, and societal cost. This convergence in opinions across actors likely reflects long-standing initiatives in the Mediterranean region towards supporting knowledge exchange in marine turtle conservation. Our results provide important guidance on how to prioritize measures that incorporate climate change in decision-making processes related to the current and future management and protection of marine turtles at the ocean-basin scale, and could be used to guide decisions in other regions globally. Importantly, this study demonstrates a successful example of how interactive processes can be used to fill the knowledge-action gap between research and management.
Pamukkale University... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 148 Powered bymore_vert Pamukkale University... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, United StatesPublisher:Wiley Antonios D. Mazaris; Paul Goriup; Stelios Katsanevakis; Charles Loiseau; Fabio Badalamenti; Carlo Pipitone; Joachim Claudet; Lisandro Benedetti-Cecchi; Lisandro Benedetti-Cecchi; Elena Gissi; Simonetta Fraschetti; Simonetta Fraschetti; Roberto Danovaro; Elisabetta Menini; Joaquim Garrabou; Joaquim Garrabou; Gil Rilov; Laura Tamburello;AbstractIn the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast‐moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent European Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.
Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 15visibility views 15 download downloads 118 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Czech Republic, Switzerland, Switzerland, South Africa, New Zealand, Czech Republic, NetherlandsPublisher:Oxford University Press (OUP) Funded by:SNSF | Dealing with uncertainty ..., EC | SPECIALS, FWF | The Global Naturalized Al... +1 projectsSNSF| Dealing with uncertainty in alien species impact assessments ,EC| SPECIALS ,FWF| The Global Naturalized Alien Flora database: patterns and drivers of plant invasions ,[no funder available]Petr Pyšek; Sven Bacher; Aníbal Pauchard; Jonathan M. Jeschke; Stelios Katsanevakis; David M. Richardson; Montserrat Vilà; Stefan Dullinger; Franz Essl; Franz Essl; Ingolf Kühn; Wim H. van der Putten; Bernd Lenzner; Piero Genovesi; Philip E. Hulme; Mark van Kleunen; Mark van Kleunen; Wolfgang Rabitsch; Hanno Seebens;Abstract For many species, human-induced environmental changes are important indirect drivers of range expansion into new regions. We argue that it is important to distinguish the range dynamics of such species from those that occur without, or with less clear, involvement of human-induced environmental changes. We elucidate the salient features of the rapid increase in the number of species whose range dynamics are human induced, and review the relationships and differences to both natural range expansion and biological invasions. We discuss the consequences for science, policy and management in an era of rapid global change and highlight four key challenges relating to basic gaps in knowledge, and the transfer of scientific understanding to biodiversity management and policy. We conclude that range-expanding species responding to human-induced environmental change will become an essential feature for biodiversity management and science in the Anthropocene. Finally, we propose the term neonative for these taxa.
BioScience arrow_drop_down BioScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesLincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biz101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 140 citations 140 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 244visibility views 244 download downloads 241 Powered bymore_vert BioScience arrow_drop_down BioScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesLincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biz101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Amalia Kyprioti; Anastasia Chatzimentor; Antonios D. Mazaris; Vasiliki Almpanidou; +1 AuthorsAmalia Kyprioti; Anastasia Chatzimentor; Antonios D. Mazaris; Vasiliki Almpanidou; Stelios Katsanevakis;pmid: 34153759
Rising ocean temperature impacts the functionality and structure of ecosystems, further triggering the redistribution of biodiversity. Still, the magnitude and anticipated impacts of ocean warming are not expected to be uniform across marine space. Here, we developed a two-fold index-based approach to provide an integrated climatic vulnerability assessment of the marine surfaces which are enclosed within protected areas in the Mediterranean Sea. We first built a climatic stability index, based on metrics of analog-based velocity of climate change over a 120-year period (1950-2069), to assess patterns of climate dynamics within the marine protected surfaces. To provide a vulnerability ranking of protected surfaces under climate change, we combined this climate-related index with an index of community stability, reflecting the projected distribution shifts of 71 species of high conservation value. Our analyses revealed a highly heterogeneous and dynamic climatic space, with increasing but spatially inconsistent patterns of climate change velocities over successive 30-year periods. We found that about 62% of the protected marine surface might be subjected to low/very low climatic stability. About 70% of the protected waters were also found to be of limited community stability. Thus, protected surfaces across the Mediterranean basin were characterized by high vulnerability under changing climatic conditions, while only 5.7% of them exhibited high and very high stability based on both indices. Our findings suggest that combining information on climate change dynamics and biotic stability could offer spatially explicit insights which cannot be obtained based simply on the ecological dimensions of conservation planning.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Frontiers Media SA Bastardie, Francois; Feary, David A.; Brunel, Thomas; Kell, Laurence T.; Döring, Ralf; Metz, Sebastien; Eigaard, Ole R.; Basurko, Oihane C.; Bartolino, Valerio; Bentley, Jacob; Bergès, B.J.P.; Bossier, Sieme; Brooks, Mollie E.; Caballero, Ainhoa; Citores, Leire; Daskalov, Georgi; Depestele, Jochen; Gabiña, Gorka; Aranda, Martin; Hamon, Katell G.; Hidalgo, Manuel; Katsanevakis, Stelios; Kempf, Alexander; Kühn, Bernhard; Nielsen, Rasmus; Püts, Miriam; Taylor, Marc; Triantaphyllidis, George; Tsagarakis, Konstantinos; Urtizberea, Agurtzane; van Hoof, Luc; van Vlasselaer, Jasper;Incorrect Affiliation In the published article, there was an error regarding the affiliation for Jasper Van Vlasselaer. Instead of: 13 Spanish Institute of Oceanography (IEO-CSIC) (Palma), Ecosystem Oceanography Group (GRECO), Palma de Mallorca, Spain, he should have: 11 Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Fisheries and Aquatic Production, Oostende, Belgium. In the published article, there was an error regarding the affiliation for Luc Van Hoof. Instead of: 14 Department of Marine Sciences, University of the Aegean, Mytilene, Greece he should have 3 Wageningen Marine Research, Wageningen University and Research, Ijmuiden, Netherlands The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
Frontiers in Marine ... arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1175059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1175059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Austria, Czech Republic, Brazil, Portugal, United Kingdom, Portugal, New Zealand, South Africa, United States, Czech RepublicPublisher:Wiley Funded by:NSF | Predicting Regional Invas..., SNSF | Dealing with uncertainty ..., FWF | Developing and applying s... +7 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,SNSF| Dealing with uncertainty in alien species impact assessments ,FWF| Developing and applying scenarios of biological invasions (AlienScenarios) ,SNSF| VTS: Verbal tenses and subjectivity: an empirical cognitive approach ,SNSF| InvasiBES ,FCT| CEG ,NSERC ,FWF| The Global Naturalized Alien Flora database: patterns and drivers of plant invasions ,FCT| CEG ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Stefan Dullinger; Jonathan M. Jeschke; Jonathan M. Jeschke; Ingolf Kühn; Ingolf Kühn; Stelios Katsanevakis; Riccardo Scalera; Petr Pyšek; Petr Pyšek; Curtis C. Daehler; Andrew M. Liebhold; Andrew M. Liebhold; Marten Winter; Nathan J. Sanders; Brian Leung; Sarah A. Bailey; Bernd Lenzner; Aníbal Pauchard; Betsy Von Holle; James C. Russell; Anna J. Turbelin; Anna J. Turbelin; Helen E. Roy; Rafael D. Zenni; Hugh J. MacIsaac; Michael R. Springborn; Martin A. Nuñez; Sven Bacher; Piero Genovesi; Piero Genovesi; Brady J. Mattsson; Laura A. Meyerson; Dov F. Sax; Chunlong Liu; Chunlong Liu; Chunlong Liu; Franz Essl; Franz Essl; Wolfgang Rabitsch; David M. Richardson; Hanno Seebens; César Capinha; Mark van Kleunen; Mark van Kleunen; Cang Hui; Cang Hui; Gregory M. Ruiz; Philip E. Hulme; Núria Roura-Pascual;AbstractUnderstanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio‐economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid‐21st century. Based on responses from 36 experts in biological invasions, moderate (20%–30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions—transport, climate change and socio‐economic change—were predicted to significantly affect future impacts of alien species on biodiversity even under a best‐case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best‐case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post‐2020 Framework of the Convention on Biological Diversity.
University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2020License: CC BYFull-Text: https://doi.org/10.1111/gcb.15199Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2020License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 162 citations 162 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 186visibility views 186 download downloads 410 Powered bymore_vert University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2020License: CC BYFull-Text: https://doi.org/10.1111/gcb.15199Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2020License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Spain, AustraliaPublisher:Public Library of Science (PLoS) Funded by:EC | COCONETEC| COCONETSimonetta Fraschetti; Sylvaine Giakoumi; Salit Kark; Salit Kark; Luigi Maiorano; Peter Mackelworth; Noam Levin; Fiorenza Micheli; Stelios Katsanevakis; Drosos Koutsoubas; Ameer Abdulla; Ameer Abdulla; Marta Coll; Hugh P. Possingham;Spatial prioritization in conservation is required to direct limited resources to where actions are most urgently needed and most likely to produce effective conservation outcomes. In an effort to advance the protection of a highly threatened hotspot of marine biodiversity, the Mediterranean Sea, multiple spatial conservation plans have been developed in recent years. Here, we review and integrate these different plans with the goal of identifying priority conservation areas that represent the current consensus among the different initiatives. A review of six existing and twelve proposed conservation initiatives highlights gaps in conservation and management planning, particularly within the southern and eastern regions of the Mediterranean and for offshore and deep sea habitats. The eighteen initiatives vary substantially in their extent (covering 0.1-58.5% of the Mediterranean Sea) and in the location of additional proposed conservation and management areas. Differences in the criteria, approaches and data used explain such variation. Despite the diversity among proposals, our analyses identified ten areas, encompassing 10% of the Mediterranean Sea, that are consistently identified among the existing proposals, with an additional 10% selected by at least five proposals. These areas represent top priorities for immediate conservation action. Despite the plethora of initiatives, major challenges face Mediterranean biodiversity and conservation. These include the need for spatial prioritization within a comprehensive framework for regional conservation planning, the acquisition of additional information from data-poor areas, species or habitats, and addressing the challenges of establishing transboundary governance and collaboration in socially, culturally and politically complex conditions. Collective prioritised action, not new conservation plans, is needed for the north, western, and high seas of the Mediterranean, while developing initial information-based plans for the south and eastern Mediterranean is an urgent requirement for true regional conservation planning.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0059038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 121 citations 121 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 38 Powered bymore_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0059038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022 Saudi ArabiaPublisher:Zenodo Garrabou, Joaquim; Gómez-Gras, Daniel; Medrano, Alba; Cerrano, Carlo; Ponti, Massimo; Schlegel, Robert; Bensoussan, Nathaniel; Turicchia, Eva; Sini, Maria; Gerovasileiou, Vasilis; Teixido, Nuria; Mirasole, Alice; Tamburello, Laura; Cebrian, Emma; Rilov, Gil; Ledoux, Jean-Baptiste; Souissi, Jamila Ben; Khamassi, Faten; Ghanem, Raouia; Benabdi, Mouloud; Grimes, Samir; Ocaña, Oscar; Bazairi, Hocein; Hereu, Bernat; Linares, Cristina; Kersting, Diego Kurt; la Rovira, Graciel; Ortega, Júlia; Casals, David; Pagès-Escolà, Marta; Margarit, Núria; Capdevila, Pol; Verdura, Jana; Ramos, Alfonso; Izquierdo, Andres; Barbera, Carmen; Rubio-Portillo, Esther; Anton, Irene; López-Sendino, Paula; Díaz, David; Vazquez-Luis, Maite; Duarte, Carlos M.; Marbà, Núria; Aspillaga, Eneko; Espinosa, Free; Grech, Daniele; Guala, Ivan; Azzurro, Ernesto; Farina, Simone; Cristina Gambi, Maria; Chimienti, Giovanni; Montefalcone, Monica; Azzola, Annalisa; Mantas, Torcuato Pulido; Fraschetti, Simonetta; Ceccherelli, Giulia; Kipson, Silvija; Bakran-Petricioli, Tatjana; Petricioli, Donat; Jimenez, Carlos; Katsanevakis, Stelios; Kizilkaya, Inci Tuney; Kizilkaya, Zafer; Sartoretto, Stephane; Elodie, Rouanet; Ruitton, Sandrine; Comeau, S.; Gattuso, Jean-Pierre; Harmelin, Jean-Georges;handle: 10754/687162
This upload contains three datasets in CSV files and a PDF file with the specific description of the CSV files. These data was used for the analysis of the mass mortality events reported during the period 2015-2019 across the Mediterranean. The datasets are 1) a CSV file with the data used for the description of the spatial-temporal, depth and biological patterns of mortality observed in the Mediterranean Sea in the 2015-2019 period; 2) a CSV file with the data used to conduct the analyses on the relationship between marine heatwaves (MHW) days found on the surface (averaged per monitored area and year) and the corresponding mass mortality incidence of benthic organisms; 3) a CSV file with the data used to conduct the analyses on the relationship between in-situ MHW days (averaged per monitored area, depth and year) and the corresponding mass mortality incidence. Data were obtained through benthic community field surveys conducted by 33 research teams from 11 Mediterranean countries. Surveys covered thousands of kms of coastline, spanning 13º of latitude (32 °S to 45 °N) and 40º of longitude (-5°W to 35°E) in the Mediterranean Sea. The dataset provides the most updated inventory of mass mortality events records for benthic species between 2015-2019 in the region. The surveys were conducted in 142 monitoring areas. Monitoring areas were considered as geographic areas (10-25 km coastline, e.g., a marine protected area and the nearby coast) sharing common environmental features. In situ temperature conditions datasets base consists of high frequency (hourly) time series obtained using HOBO data loggers (accuracy ± 0.21°C) set-up at standard depths along rocky walls by divers, generally every 5 m from the surface to 40 m depth.This dataset as in the case of the mortality was assembled under the T-MEDNet initiative (www.t-mednet.org). Satellite derived sea surface temperature (SST) across the Mediterranean Sea was obtained from CMEMS (https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SST_MED_SST_L4_REP_OBSERVATIONS_010_021). The data consists of daily (night-time), gap free, optimally interpolated foundation SST at ~4 km resolution from AVHRR with improved accuracy and stability over the 1982-2019 period
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5877711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5877711&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Australia, Spain, FrancePublisher:Wiley Funded by:EC | DEVOTES, EC | COCONET, EC | BIOWEB +1 projectsEC| DEVOTES ,EC| COCONET ,EC| BIOWEB ,FCT| SFRH/BPD/74400/2010Salit Kark; Fiorenza Micheli; Jean-Baptiste Ledoux; Jean-Baptiste Ledoux; Tessa Mazor; Drosos Koutsoubas; Bastien Mérigot; Joachim Claudet; François Guilhaumon; Carlo Cerrano; Stelios Katsanevakis; Antonio Terlizzi; Roberto Danovaro; Roberto Danovaro; Marta Coll; Marta Coll; Serena Felline; Simonetta Fraschetti; Sylvaine Giakoumi; Sylvaine Giakoumi;doi: 10.1111/ddi.12491
handle: 10261/143578
AbstractAimBiological invasions are major contributors to global change and native biodiversity decline. However, they are overlooked in marine conservation plans. Here, we examine for the first time the extent to which marine conservation planning research has addressed (or ignored) biological invasions. Furthermore, we explore the change of spatial priorities in conservation plans when different approaches are used to incorporate the presence and impacts of invasive species.LocationGlobal analysis with a focus on the Mediterranean Sea region.MethodsWe conducted a systematic literature review consisting of three steps: (1) article selection using a search engine, (2) abstract screening and (3) review of pertinent articles, which were identified in the second step. The information extracted included the scale and geographical location of each case study as well as the approach followed regarding invasive species. We also applied the softwareMarxanto produce and compare conservation plans for the Mediterranean Sea that either protect, or avoid areas impacted by invasives, or ignore the issue. One case study focused on the protection of critical habitats, and the other on endemic fish species.ResultsWe found that of 119 papers on marine spatial plans in specific biogeographic regions, only three (2.5%) explicitly took into account invasive species. When comparing the different conservation plans for each case study, we found that the majority of selected sites for protection (ca. 80%) changed in the critical habitat case study, while this proportion was lower but substantial (27%) in the endemic fish species case study.Main conclusionsBiological invasions are being widely disregarded when planning for conservation in the marine environment across local to global scales. More explicit consideration of biological invasions can significantly alter spatial conservation priorities. Future conservation plans should explicitly account for biological invasions to optimize the selection of marine protected areas.
Diversity and Distri... arrow_drop_down Diversity and DistributionsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.12491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 37 Powered bymore_vert Diversity and Distri... arrow_drop_down Diversity and DistributionsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ddi.12491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Wiley Aggeliki Doxa; Vasiliki Almpanidou; Stelios Katsanevakis; Ana M. Queirós; Kristin Kaschner; Cristina Garilao; Kathleen Kesner‐Reyes; Antonios D. Mazaris;doi: 10.1111/gcb.16268
pmid: 35583810
AbstractGiven the accelerating rate of biodiversity loss, the need to prioritize marine areas for protection represents a major conservation challenge. The three‐dimensionality of marine life and ecosystems is an inherent element of complexity for setting spatial conservation plans. Yet, the confidence of any recommendation largely depends on shifting climate, which triggers a global redistribution of biodiversity, suggesting the inclusion of time as a fourth dimension. Here, we developed a depth‐specific prioritization analysis to inform the design of protected areas, further including metrics of climate‐driven changes in the ocean. Climate change was captured in this analysis by considering the projected future distribution of >2000 benthic and pelagic species inhabiting the Mediterranean Sea, combined with climatic stability and heterogeneity metrics of the seascape. We identified important areas based on both biological and climatic criteria, where conservation focus should be given in priority when designing a three‐dimensional, climate‐smart protected area network. We detected spatially concise, conservation priority areas, distributed around the basin, that protected marine areas almost equally across all depth zones. Our approach highlights the importance of deep sea zones as priority areas to meet conservation targets for future marine biodiversity, while suggesting that spatial prioritization schemes, that focus on a static two‐dimensional distribution of biodiversity data, might fail to englobe both the vertical properties of species distributions and the fine and larger‐scale impacts associated with climate change.
OceanRep arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Turkey, SpainPublisher:Elsevier BV Funded by:EC | FutureMARESEC| FutureMARESAntonios D. Mazaris; Charalampos Dimitriadis; Maria Papazekou; Gail Schofield; Aggeliki Doxa; Anastasia Chatzimentor; Oguz Turkozan; Stelios Katsanevakis; Aphrodite Lioliou; Sara Abalo-Morla; Mustapha Aksissou; Antonella Arcangeli; Vincent Attard; Hedia Attia El Hili; Fabrizio Atzori; Eduardo J. Belda; Lobna Ben Nakhla; Ali A. Berbash; Karen A. Bjorndal; Annette C. Broderick; Juan A. Camiñas; Onur Candan; Luis Cardona; Ilija Cetkovic; Nabigha Dakik; Giuseppe Andrea de Lucia; Panayiotis G. Dimitrakopoulos; Salih Diryaq; Costanza Favilli; Caterina Maria Fortuna; Wayne J. Fuller; Susan Gallon; Abdulmaula Hamza; Imed Jribi; Manel Ben Ismail; Yiannis Kamarianakis; Yakup Kaska; Kastriot Korro; Drosos Koutsoubas; Giancarlo Lauriano; Bojan Lazar; David March; Adolfo Marco; Charikleia Minotou; Jonathan R. Monsinjon; Nahla M. Naguib; Andreas Palialexis; Vilma Piroli; Karaa Sami; Bektaş Sönmez; Laurent Sourbès; Doğan Sözbilen; Frederic Vandeperre; Pierre Vignes; Michail Xanthakis; Vera Köpsel; Myron A. Peck;As climate-related impacts threaten marine biodiversity globally, it is important to adjust conservation efforts to mitigate the effects of climate change. Translating scientific knowledge into practical management, however, is often complicated due to resource, economic and policy constraints, generating a knowledge-action gap. To develop potential solutions for marine turtle conservation, we explored the perceptions of key actors across 18 countries in the Mediterranean. These actors evaluated their perceived relative importance of 19 adaptation and mitigation measures that could safeguard marine turtles from climate change. Of importance, despite differences in expertise, experience and focal country, the perceptions of researchers and management practitioners largely converged with respect to prioritizing adaptation and mitigation measures. Climate change was considered to have the greatest impacts on offspring sex ratios and suitable nesting sites. The most viable adaptation/mitigation measures were considered to be reducing other pressures that act in parallel to climate change. Ecological effectiveness represented a key determinant for implementing proposed measures, followed by practical applicability, financial cost, and societal cost. This convergence in opinions across actors likely reflects long-standing initiatives in the Mediterranean region towards supporting knowledge exchange in marine turtle conservation. Our results provide important guidance on how to prioritize measures that incorporate climate change in decision-making processes related to the current and future management and protection of marine turtles at the ocean-basin scale, and could be used to guide decisions in other regions globally. Importantly, this study demonstrates a successful example of how interactive processes can be used to fill the knowledge-action gap between research and management.
Pamukkale University... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 148 Powered bymore_vert Pamukkale University... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Spain, United StatesPublisher:Wiley Antonios D. Mazaris; Paul Goriup; Stelios Katsanevakis; Charles Loiseau; Fabio Badalamenti; Carlo Pipitone; Joachim Claudet; Lisandro Benedetti-Cecchi; Lisandro Benedetti-Cecchi; Elena Gissi; Simonetta Fraschetti; Simonetta Fraschetti; Roberto Danovaro; Elisabetta Menini; Joaquim Garrabou; Joaquim Garrabou; Gil Rilov; Laura Tamburello;AbstractIn the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast‐moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent European Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.
Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 15visibility views 15 download downloads 118 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Czech Republic, Switzerland, Switzerland, South Africa, New Zealand, Czech Republic, NetherlandsPublisher:Oxford University Press (OUP) Funded by:SNSF | Dealing with uncertainty ..., EC | SPECIALS, FWF | The Global Naturalized Al... +1 projectsSNSF| Dealing with uncertainty in alien species impact assessments ,EC| SPECIALS ,FWF| The Global Naturalized Alien Flora database: patterns and drivers of plant invasions ,[no funder available]Petr Pyšek; Sven Bacher; Aníbal Pauchard; Jonathan M. Jeschke; Stelios Katsanevakis; David M. Richardson; Montserrat Vilà; Stefan Dullinger; Franz Essl; Franz Essl; Ingolf Kühn; Wim H. van der Putten; Bernd Lenzner; Piero Genovesi; Philip E. Hulme; Mark van Kleunen; Mark van Kleunen; Wolfgang Rabitsch; Hanno Seebens;Abstract For many species, human-induced environmental changes are important indirect drivers of range expansion into new regions. We argue that it is important to distinguish the range dynamics of such species from those that occur without, or with less clear, involvement of human-induced environmental changes. We elucidate the salient features of the rapid increase in the number of species whose range dynamics are human induced, and review the relationships and differences to both natural range expansion and biological invasions. We discuss the consequences for science, policy and management in an era of rapid global change and highlight four key challenges relating to basic gaps in knowledge, and the transfer of scientific understanding to biodiversity management and policy. We conclude that range-expanding species responding to human-induced environmental change will become an essential feature for biodiversity management and science in the Anthropocene. Finally, we propose the term neonative for these taxa.
BioScience arrow_drop_down BioScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesLincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biz101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 140 citations 140 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 244visibility views 244 download downloads 241 Powered bymore_vert BioScience arrow_drop_down BioScienceArticle . 2019 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesLincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/biosci/biz101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Amalia Kyprioti; Anastasia Chatzimentor; Antonios D. Mazaris; Vasiliki Almpanidou; +1 AuthorsAmalia Kyprioti; Anastasia Chatzimentor; Antonios D. Mazaris; Vasiliki Almpanidou; Stelios Katsanevakis;pmid: 34153759
Rising ocean temperature impacts the functionality and structure of ecosystems, further triggering the redistribution of biodiversity. Still, the magnitude and anticipated impacts of ocean warming are not expected to be uniform across marine space. Here, we developed a two-fold index-based approach to provide an integrated climatic vulnerability assessment of the marine surfaces which are enclosed within protected areas in the Mediterranean Sea. We first built a climatic stability index, based on metrics of analog-based velocity of climate change over a 120-year period (1950-2069), to assess patterns of climate dynamics within the marine protected surfaces. To provide a vulnerability ranking of protected surfaces under climate change, we combined this climate-related index with an index of community stability, reflecting the projected distribution shifts of 71 species of high conservation value. Our analyses revealed a highly heterogeneous and dynamic climatic space, with increasing but spatially inconsistent patterns of climate change velocities over successive 30-year periods. We found that about 62% of the protected marine surface might be subjected to low/very low climatic stability. About 70% of the protected waters were also found to be of limited community stability. Thus, protected surfaces across the Mediterranean basin were characterized by high vulnerability under changing climatic conditions, while only 5.7% of them exhibited high and very high stability based on both indices. Our findings suggest that combining information on climate change dynamics and biotic stability could offer spatially explicit insights which cannot be obtained based simply on the ecological dimensions of conservation planning.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Frontiers Media SA Bastardie, Francois; Feary, David A.; Brunel, Thomas; Kell, Laurence T.; Döring, Ralf; Metz, Sebastien; Eigaard, Ole R.; Basurko, Oihane C.; Bartolino, Valerio; Bentley, Jacob; Bergès, B.J.P.; Bossier, Sieme; Brooks, Mollie E.; Caballero, Ainhoa; Citores, Leire; Daskalov, Georgi; Depestele, Jochen; Gabiña, Gorka; Aranda, Martin; Hamon, Katell G.; Hidalgo, Manuel; Katsanevakis, Stelios; Kempf, Alexander; Kühn, Bernhard; Nielsen, Rasmus; Püts, Miriam; Taylor, Marc; Triantaphyllidis, George; Tsagarakis, Konstantinos; Urtizberea, Agurtzane; van Hoof, Luc; van Vlasselaer, Jasper;Incorrect Affiliation In the published article, there was an error regarding the affiliation for Jasper Van Vlasselaer. Instead of: 13 Spanish Institute of Oceanography (IEO-CSIC) (Palma), Ecosystem Oceanography Group (GRECO), Palma de Mallorca, Spain, he should have: 11 Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Fisheries and Aquatic Production, Oostende, Belgium. In the published article, there was an error regarding the affiliation for Luc Van Hoof. Instead of: 14 Department of Marine Sciences, University of the Aegean, Mytilene, Greece he should have 3 Wageningen Marine Research, Wageningen University and Research, Ijmuiden, Netherlands The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
Frontiers in Marine ... arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1175059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2023.1175059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Austria, Czech Republic, Brazil, Portugal, United Kingdom, Portugal, New Zealand, South Africa, United States, Czech RepublicPublisher:Wiley Funded by:NSF | Predicting Regional Invas..., SNSF | Dealing with uncertainty ..., FWF | Developing and applying s... +7 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,SNSF| Dealing with uncertainty in alien species impact assessments ,FWF| Developing and applying scenarios of biological invasions (AlienScenarios) ,SNSF| VTS: Verbal tenses and subjectivity: an empirical cognitive approach ,SNSF| InvasiBES ,FCT| CEG ,NSERC ,FWF| The Global Naturalized Alien Flora database: patterns and drivers of plant invasions ,FCT| CEG ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Stefan Dullinger; Jonathan M. Jeschke; Jonathan M. Jeschke; Ingolf Kühn; Ingolf Kühn; Stelios Katsanevakis; Riccardo Scalera; Petr Pyšek; Petr Pyšek; Curtis C. Daehler; Andrew M. Liebhold; Andrew M. Liebhold; Marten Winter; Nathan J. Sanders; Brian Leung; Sarah A. Bailey; Bernd Lenzner; Aníbal Pauchard; Betsy Von Holle; James C. Russell; Anna J. Turbelin; Anna J. Turbelin; Helen E. Roy; Rafael D. Zenni; Hugh J. MacIsaac; Michael R. Springborn; Martin A. Nuñez; Sven Bacher; Piero Genovesi; Piero Genovesi; Brady J. Mattsson; Laura A. Meyerson; Dov F. Sax; Chunlong Liu; Chunlong Liu; Chunlong Liu; Franz Essl; Franz Essl; Wolfgang Rabitsch; David M. Richardson; Hanno Seebens; César Capinha; Mark van Kleunen; Mark van Kleunen; Cang Hui; Cang Hui; Gregory M. Ruiz; Philip E. Hulme; Núria Roura-Pascual;AbstractUnderstanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio‐economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid‐21st century. Based on responses from 36 experts in biological invasions, moderate (20%–30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions—transport, climate change and socio‐economic change—were predicted to significantly affect future impacts of alien species on biodiversity even under a best‐case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best‐case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post‐2020 Framework of the Convention on Biological Diversity.
University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2020License: CC BYFull-Text: https://doi.org/10.1111/gcb.15199Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2020License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 162 citations 162 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 186visibility views 186 download downloads 410 Powered bymore_vert University of Rhode ... arrow_drop_down University of Rhode Island: DigitalCommons@URIArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2020License: CC BYFull-Text: https://doi.org/10.1111/gcb.15199Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2020License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of Sciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Spain, AustraliaPublisher:Public Library of Science (PLoS) Funded by:EC | COCONETEC| COCONETSimonetta Fraschetti; Sylvaine Giakoumi; Salit Kark; Salit Kark; Luigi Maiorano; Peter Mackelworth; Noam Levin; Fiorenza Micheli; Stelios Katsanevakis; Drosos Koutsoubas; Ameer Abdulla; Ameer Abdulla; Marta Coll; Hugh P. Possingham;Spatial prioritization in conservation is required to direct limited resources to where actions are most urgently needed and most likely to produce effective conservation outcomes. In an effort to advance the protection of a highly threatened hotspot of marine biodiversity, the Mediterranean Sea, multiple spatial conservation plans have been developed in recent years. Here, we review and integrate these different plans with the goal of identifying priority conservation areas that represent the current consensus among the different initiatives. A review of six existing and twelve proposed conservation initiatives highlights gaps in conservation and management planning, particularly within the southern and eastern regions of the Mediterranean and for offshore and deep sea habitats. The eighteen initiatives vary substantially in their extent (covering 0.1-58.5% of the Mediterranean Sea) and in the location of additional proposed conservation and management areas. Differences in the criteria, approaches and data used explain such variation. Despite the diversity among proposals, our analyses identified ten areas, encompassing 10% of the Mediterranean Sea, that are consistently identified among the existing proposals, with an additional 10% selected by at least five proposals. These areas represent top priorities for immediate conservation action. Despite the plethora of initiatives, major challenges face Mediterranean biodiversity and conservation. These include the need for spatial prioritization within a comprehensive framework for regional conservation planning, the acquisition of additional information from data-poor areas, species or habitats, and addressing the challenges of establishing transboundary governance and collaboration in socially, culturally and politically complex conditions. Collective prioritised action, not new conservation plans, is needed for the north, western, and high seas of the Mediterranean, while developing initial information-based plans for the south and eastern Mediterranean is an urgent requirement for true regional conservation planning.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0059038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 121 citations 121 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 38 Powered bymore_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0059038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu