- home
- Advanced Search
- Energy Research
- 2021-2025
- Energy Research
- 2021-2025
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Adriano Gomes de Freitas; Ricardo Borges dos Santos; Luis Alberto Martinez Riascos; Jose Eduardo Munive-Hernandez; +3 AuthorsAdriano Gomes de Freitas; Ricardo Borges dos Santos; Luis Alberto Martinez Riascos; Jose Eduardo Munive-Hernandez; Shibo Kuang; Ruiping Zou; Aibing Yu;Pneumatic conveying of powders is an engineering process used for conveying dry granulate or powder material where energy consumption is a significant cost factor and contributes to greenhouse gas emissions. In this RD&I project, work was conducted to model pneumatic conveying and bulk characteristics of the particulate product being conveyed. Because pneumatic conveyance is highly empirical, general models are difficult to establish. Due to these limitations, evaluating energy efficiency is usually limited to a specific experimental range of conditions. This work is based on engineering optimization of a workflow with data from an industrial operation commanded by a Programmable Logic Controller (PLC) with a control algorithm, performing logical, sequential, and timed tasks for plant control. The PLC communicates with a Human–Machine Interface and a Supervision and Control System, which are the means of interaction through a graphical environment interface with the process operator. By applying mathematics to introduce a systematic method to select the gas (air) pressure and flow necessary to operate a pneumatic conveying system in dense phase mode, it has been shown, on an industrial scale of 10 t/h, the feasibility of controlling an efficient pneumatic conveying system manipulating only two input parameters. This allows operation at pre-determined conveying rates with lower operational expenditures. The same methodology can be explored for several other systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.05.270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.05.270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Huibin Xu; Aibing Yu; Wenqi Zhong; Haipeng Zhu;Abstract A new conical-cylindrical top-discharge blow tank is designed, by introducing the pulsed gas to facilitate discharging, for stable transportation for kaolin powders. A series of experimental studies on pulsed gas characteristic parameters like pulsed gas flow rate Qpulsed (5 m3/h ≤ Qpulsed ≤ 25 m3/h), pulsed interval tpulsed (1 s ≤ tpulsed ≤ 5 s) and pulsed width τpulsed (50 ms ≤ τpulsed ≤ 250 ms) are conducted with the fluidized gas flow rate of 12 m3/h. The experiments mainly test the powder mass flow rate and solid-gas ratio in the conveying process. The results indicate that the mass flow rate and solid-gas ratio range 12.6–278.04 kg/h and 0.9–19.56 kg/m3, respectively. With the increase of the pulsed gas flow rate, the mass flow rate and solid gas ratio first increase and then decrease. When the ratio of fluidized gas flow rate to pulsed gas flow rate is within 0.8–1.2, its conveying capacity reaches the maximum. Meanwhile, the increase in the pulsed interval leads to the decrease of the mass flow rate and solid-gas ratio. Moreover, the increase in the pulsed width leads to the initial increase and then the stabilization of the mass flow rate and solid gas ratio. When the pulsed width is 50 ms, the improvement of discharge would small. Conversely, increasing the pulsed width can increase the discharge, and stabilize subsequently until over 200 ms. Besides, moisture content is one of the important factors affecting kaolin powders discharge. When the moisture content is 0.83%, the pulsed gas does not improve the discharge significantly. Meanwhile, pressure distribution at different locations in the tank is also measured. The results reveal that the introduction of pulsed gas changes the pressure distribution in the tank. A pressure zone is formed on the upper part of the tank, which promotes the powder discharge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.10.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.10.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:ARC | Industrial Transformation...ARC| Industrial Transformation Research Hubs - Grant ID: IH140100035Lulu Jiao; Lulu Jiao; Hui Xu; Yuntao Li; Shibo Kuang; Aibing Yu; Aibing Yu; Xiaoming Mao;Non-uniform blast injection often occurs in blast furnace (BFs) ironmaking process, but the consequences in the inner state remain unclear under industrial operating conditions. This paper presents a numerical study of three-dimensional (3D) flow and thermochemical behaviors inside a 5000-m3 commercial BF under non-uniform blast injection. This is based on a recently developed computational fluid dynamics (CFD) process model. The model has been validated under experimental and industrial conditions. It is used here to study the effects of tuyere closure on the asymmetric distributions of 3D inner state and the overall performance of the BF. The numerical results show that the increase in inactive tuyere number substantially enlarges the deadman size and shifts the highest deadman boundary from the BF center to the periphery, consistent with the lab-scale experimental observations. Also, the tuyere closure causes significantly asymmetric distributions of gas, solid, and liquid velocities and temperature, as well as reactions. The phenomenon occurs mainly in the low part of the BF and is more pronounced at a larger inactive tuyere number. When the inactive tuyere number is large, a "W"-shaped cohesive zone (CZ) is observed over the inactive tuyeres, the same as observed by a low-temperature hot-experimental BF model. Corresponding to this "W"-shaped CZ, a cavity forms in the CZ, beneath which a strong liquid flow develops, causing the substantial non-uniformity in liquid temperature distribution. Additionally, tuyere closure affects carbon consumption and liquid temperature oppositely in the regions over the active and inactive tuyeres. These effects are canceled out by each other, leading to inconsiderable variations of overall performance indicators like top gas utilization factor and liquid temperature.
Metallurgical and Ma... arrow_drop_down Metallurgical and Materials Transactions BArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11663-021-02217-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Metallurgical and Ma... arrow_drop_down Metallurgical and Materials Transactions BArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11663-021-02217-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Noor Ilyana Ismail; Shibo Kuang; Yechen Tang; Aibing Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Noor Ilyana Ismail; Shibo Kuang; Enzu Zheng; Aibing Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:ARC | Industrial Transformation...ARC| Industrial Transformation Research Hubs - Grant ID: IH140100035Authors: Angga Pratama Herman; Jieqing Gan; Zongyan Zhou; Aibing Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ..., ARC | Industrial Transformation...ARC| Linkage Projects - Grant ID: LP160100819 ,ARC| Industrial Transformation Research Hubs - Grant ID: IH140100035Mengmeng Zhou; Noor Ilyana Ismail; Shibo Kuang; Aibing Yu; Aibing Yu;Abstract Non-uniform sand retention behavior often occurs to the serviced screen deteriorating erosion. However, this phenomenon is poorly understood. This paper presents a numerical study of the sand retention on wire-wrapped screens, with special reference to non-uniform behaviors. This is done by the combined approach of computational fluid dynamics (CFD) and discrete element method (DEM). The validity of the model has been validated for dry and wet sand screen systems. It is used here to study sand retention behaviors at different solid concentrations and particle size distributions (PSD). Via this model, five distinct sand retention modes are identified: No sand retention (Mode I), partial sand retention (Mode II), sand retention with slow sequential bridging (Mode III), sand retention with fast sequential bridging (Model IV) and sand retention with instantaneous bridging (Mode V). Modes II and III belong to non-uniform sand retention, which develops strong local flows that induce local erosion or hot spot on the screen. A phase diagram is introduced to predict these five modes and their transition with respect to solid concentration and PSD. Additionally, the predicted flow and force structures are analyzed in detail. The results indicate that the bridging over a slot heavily relies on the particle accumulation on the screen. A new screen with a converging slot configuration is proposed to improve this particle accumulation. This improvement helps develop uniform sand retention on the screen.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2021.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2021.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Huibin Xu; Weiyu Wang; Chi Ma; Wenqi Zhong; Aibing Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Zeyu Li; Zhenbo Tong; Hao Zhang; Kaiwei Chu; Renjie Li; Hao Miao; Jiansong Zhao; Aibing Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2023.118261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2023.118261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Liejin Guo; Suya Guo; Peng Zhou; Dianyu E; Aibing Yu; Qinfu Hou; Qiang Xu; Jia Zeng;Abstract The raceway is a zone of considerable significance in a blast furnace (BF) because it supplies energy and reducing agents that ensure successful and stable BF operation. Recently, experimental and numerical studies of BF have been widely conducted to examine the inner multiphase flow transport phenomena; however, the study of reacting flows at the particle level in BF is limited. In this study, a multiscale method that couples computational fluid dynamics (CFD) with discrete element method (DEM) is employed to examine the dynamic evolution of the raceway and inner thermo-chemical behaviours in a BF. Raceway evolution and formation, microscale characteristics, and coke temperature and combustion are comprehensively explored and analysed under various operating conditions. The predicted results show that the distributions of coke temperature, carbon loss, and diameter variation are consistent. More burning coke particles occurs in the vicinity of the region next to the tuyere, where there is a stronger high-temperature circular gas flow than in other regions. The increase in oxygen concentration indirectly increased the carbon monoxide concentration, but changes in the inlet gas temperature and flow rate yielded no effect on the carbon monoxide level in the studied ranges. These new perceptions of the complicated reacting flows inside the raceway area are beneficial for the fundamental understanding of energy utilisation and process optimisation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Adriano Gomes de Freitas; Ricardo Borges dos Santos; Luis Alberto Martinez Riascos; Jose Eduardo Munive-Hernandez; +3 AuthorsAdriano Gomes de Freitas; Ricardo Borges dos Santos; Luis Alberto Martinez Riascos; Jose Eduardo Munive-Hernandez; Shibo Kuang; Ruiping Zou; Aibing Yu;Pneumatic conveying of powders is an engineering process used for conveying dry granulate or powder material where energy consumption is a significant cost factor and contributes to greenhouse gas emissions. In this RD&I project, work was conducted to model pneumatic conveying and bulk characteristics of the particulate product being conveyed. Because pneumatic conveyance is highly empirical, general models are difficult to establish. Due to these limitations, evaluating energy efficiency is usually limited to a specific experimental range of conditions. This work is based on engineering optimization of a workflow with data from an industrial operation commanded by a Programmable Logic Controller (PLC) with a control algorithm, performing logical, sequential, and timed tasks for plant control. The PLC communicates with a Human–Machine Interface and a Supervision and Control System, which are the means of interaction through a graphical environment interface with the process operator. By applying mathematics to introduce a systematic method to select the gas (air) pressure and flow necessary to operate a pneumatic conveying system in dense phase mode, it has been shown, on an industrial scale of 10 t/h, the feasibility of controlling an efficient pneumatic conveying system manipulating only two input parameters. This allows operation at pre-determined conveying rates with lower operational expenditures. The same methodology can be explored for several other systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.05.270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.05.270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Huibin Xu; Aibing Yu; Wenqi Zhong; Haipeng Zhu;Abstract A new conical-cylindrical top-discharge blow tank is designed, by introducing the pulsed gas to facilitate discharging, for stable transportation for kaolin powders. A series of experimental studies on pulsed gas characteristic parameters like pulsed gas flow rate Qpulsed (5 m3/h ≤ Qpulsed ≤ 25 m3/h), pulsed interval tpulsed (1 s ≤ tpulsed ≤ 5 s) and pulsed width τpulsed (50 ms ≤ τpulsed ≤ 250 ms) are conducted with the fluidized gas flow rate of 12 m3/h. The experiments mainly test the powder mass flow rate and solid-gas ratio in the conveying process. The results indicate that the mass flow rate and solid-gas ratio range 12.6–278.04 kg/h and 0.9–19.56 kg/m3, respectively. With the increase of the pulsed gas flow rate, the mass flow rate and solid gas ratio first increase and then decrease. When the ratio of fluidized gas flow rate to pulsed gas flow rate is within 0.8–1.2, its conveying capacity reaches the maximum. Meanwhile, the increase in the pulsed interval leads to the decrease of the mass flow rate and solid-gas ratio. Moreover, the increase in the pulsed width leads to the initial increase and then the stabilization of the mass flow rate and solid gas ratio. When the pulsed width is 50 ms, the improvement of discharge would small. Conversely, increasing the pulsed width can increase the discharge, and stabilize subsequently until over 200 ms. Besides, moisture content is one of the important factors affecting kaolin powders discharge. When the moisture content is 0.83%, the pulsed gas does not improve the discharge significantly. Meanwhile, pressure distribution at different locations in the tank is also measured. The results reveal that the introduction of pulsed gas changes the pressure distribution in the tank. A pressure zone is formed on the upper part of the tank, which promotes the powder discharge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.10.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.10.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:ARC | Industrial Transformation...ARC| Industrial Transformation Research Hubs - Grant ID: IH140100035Lulu Jiao; Lulu Jiao; Hui Xu; Yuntao Li; Shibo Kuang; Aibing Yu; Aibing Yu; Xiaoming Mao;Non-uniform blast injection often occurs in blast furnace (BFs) ironmaking process, but the consequences in the inner state remain unclear under industrial operating conditions. This paper presents a numerical study of three-dimensional (3D) flow and thermochemical behaviors inside a 5000-m3 commercial BF under non-uniform blast injection. This is based on a recently developed computational fluid dynamics (CFD) process model. The model has been validated under experimental and industrial conditions. It is used here to study the effects of tuyere closure on the asymmetric distributions of 3D inner state and the overall performance of the BF. The numerical results show that the increase in inactive tuyere number substantially enlarges the deadman size and shifts the highest deadman boundary from the BF center to the periphery, consistent with the lab-scale experimental observations. Also, the tuyere closure causes significantly asymmetric distributions of gas, solid, and liquid velocities and temperature, as well as reactions. The phenomenon occurs mainly in the low part of the BF and is more pronounced at a larger inactive tuyere number. When the inactive tuyere number is large, a "W"-shaped cohesive zone (CZ) is observed over the inactive tuyeres, the same as observed by a low-temperature hot-experimental BF model. Corresponding to this "W"-shaped CZ, a cavity forms in the CZ, beneath which a strong liquid flow develops, causing the substantial non-uniformity in liquid temperature distribution. Additionally, tuyere closure affects carbon consumption and liquid temperature oppositely in the regions over the active and inactive tuyeres. These effects are canceled out by each other, leading to inconsiderable variations of overall performance indicators like top gas utilization factor and liquid temperature.
Metallurgical and Ma... arrow_drop_down Metallurgical and Materials Transactions BArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11663-021-02217-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Metallurgical and Ma... arrow_drop_down Metallurgical and Materials Transactions BArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11663-021-02217-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Noor Ilyana Ismail; Shibo Kuang; Yechen Tang; Aibing Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Noor Ilyana Ismail; Shibo Kuang; Enzu Zheng; Aibing Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117961&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:ARC | Industrial Transformation...ARC| Industrial Transformation Research Hubs - Grant ID: IH140100035Authors: Angga Pratama Herman; Jieqing Gan; Zongyan Zhou; Aibing Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ..., ARC | Industrial Transformation...ARC| Linkage Projects - Grant ID: LP160100819 ,ARC| Industrial Transformation Research Hubs - Grant ID: IH140100035Mengmeng Zhou; Noor Ilyana Ismail; Shibo Kuang; Aibing Yu; Aibing Yu;Abstract Non-uniform sand retention behavior often occurs to the serviced screen deteriorating erosion. However, this phenomenon is poorly understood. This paper presents a numerical study of the sand retention on wire-wrapped screens, with special reference to non-uniform behaviors. This is done by the combined approach of computational fluid dynamics (CFD) and discrete element method (DEM). The validity of the model has been validated for dry and wet sand screen systems. It is used here to study sand retention behaviors at different solid concentrations and particle size distributions (PSD). Via this model, five distinct sand retention modes are identified: No sand retention (Mode I), partial sand retention (Mode II), sand retention with slow sequential bridging (Mode III), sand retention with fast sequential bridging (Model IV) and sand retention with instantaneous bridging (Mode V). Modes II and III belong to non-uniform sand retention, which develops strong local flows that induce local erosion or hot spot on the screen. A phase diagram is introduced to predict these five modes and their transition with respect to solid concentration and PSD. Additionally, the predicted flow and force structures are analyzed in detail. The results indicate that the bridging over a slot heavily relies on the particle accumulation on the screen. A new screen with a converging slot configuration is proposed to improve this particle accumulation. This improvement helps develop uniform sand retention on the screen.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2021.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2021.10.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Huibin Xu; Weiyu Wang; Chi Ma; Wenqi Zhong; Aibing Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2022.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Zeyu Li; Zhenbo Tong; Hao Zhang; Kaiwei Chu; Renjie Li; Hao Miao; Jiansong Zhao; Aibing Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2023.118261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2023.118261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Liejin Guo; Suya Guo; Peng Zhou; Dianyu E; Aibing Yu; Qinfu Hou; Qiang Xu; Jia Zeng;Abstract The raceway is a zone of considerable significance in a blast furnace (BF) because it supplies energy and reducing agents that ensure successful and stable BF operation. Recently, experimental and numerical studies of BF have been widely conducted to examine the inner multiphase flow transport phenomena; however, the study of reacting flows at the particle level in BF is limited. In this study, a multiscale method that couples computational fluid dynamics (CFD) with discrete element method (DEM) is employed to examine the dynamic evolution of the raceway and inner thermo-chemical behaviours in a BF. Raceway evolution and formation, microscale characteristics, and coke temperature and combustion are comprehensively explored and analysed under various operating conditions. The predicted results show that the distributions of coke temperature, carbon loss, and diameter variation are consistent. More burning coke particles occurs in the vicinity of the region next to the tuyere, where there is a stronger high-temperature circular gas flow than in other regions. The increase in oxygen concentration indirectly increased the carbon monoxide concentration, but changes in the inlet gas temperature and flow rate yielded no effect on the carbon monoxide level in the studied ranges. These new perceptions of the complicated reacting flows inside the raceway area are beneficial for the fundamental understanding of energy utilisation and process optimisation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu