- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Oxford University Press (OUP) Andrea Watzinger; Martin H. Gerzabek; Ika Djukic; Micha Horacek; Franz Zehetner;pmid: 22809312
Litter decomposition represents one of the largest fluxes in the global terrestrial carbon cycle. The aim of this study was to improve our understanding of the factors governing decomposition in alpine ecosystems and how their responses to changing environmental conditions change over time. Our study area stretches over an elevation gradient of 1000 m on the Hochschwab massif in the Northern Limestone Alps of Austria. We used high-to-low elevation soil translocation to simulate the combined effects of changing climatic conditions, shifting vegetation zones, and altered snow cover regimes. In original and translocated soils, we conducted in situ decomposition experiments with maize litter and studied carbon turnover dynamics as well as temporal response patterns of the pathways of carbon during microbial decomposition over a 2-year incubation period. A simulated mean annual soil warming (through down-slope translocation) of 1.5 and 2.7 °C, respectively, resulted in a significantly accelerated turnover of added maize carbon. Changes in substrate quantity and quality in the course of the decomposition appeared to have less influence on the microbial community composition and its substrate utilization than the prevailing environmental/site conditions, to which the microbial community adapted quickly upon change. In general, microbial community composition and function significantly affected substrate decomposition rates only in the later stage of decomposition when the differentiation in substrate use among the microbial groups became more evident. Our study demonstrated that rising temperatures in alpine ecosystems may accelerate decomposition of litter carbon and also lead to a rapid adaptation of the microbial communities to the new environmental conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2012.01449.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2012.01449.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 BelgiumPublisher:Elsevier BV Funded by:EC | PASTFORWARDEC| PASTFORWARDWang, Bin; Blondeel, Haben; Baeten, Lander; Djukic, Ika; De Lombaerde, Emiel; Verheyen, Kris;handle: 1854/LU-8631503
Human-induced environmental changes in temperature, light availability due to forest canopy management, nitrogen deposition, and land-use legacies can alter ecosystem processes such as litter decomposition. These influences can be both direct and indirect via altering the performance of understorey vegetation. To identify the direct and indirect effects of environmental changes on litter decomposition, we performed an experiment with standardised green and rooibos teas. The experiment was conducted in a temperate mixed deciduous forest, and treatments (temperature, light, and nitrogen) were applied to mesocosms filled with ancient and post-agricultural forest soil. Both green tea and rooibos teas were more rapidly decomposed in oligotrophic soil than in eutrophic soil. The direct effects of the treatments on litter decomposition varied among the two litter types, incubation times, and soil fertility groups. Warming and agricultural legacy had a negative direct effect on the decomposition of the green tea in the high soil fertility treatment during the early decomposition stage. In contrast, agricultural legacy had a positive direct effect on the decomposition of rooibos tea. Soil enriched with nitrogen had a negative direct effect on the decomposition of green tea in mesotrophic soil in the early decomposition stage and on rooibos tea in later stage. The indirect effects of the treatments were consistently negative, as treatments (especially the temperature and light treatments in the early decomposition stage) had a positive effect on plant cover, which negatively affected litter decomposition. Our results indicate that warming, increased nitrogen deposition, and land use legacy can directly stimulate the decomposition of labile litter on more fertile soils. Furthermore, warming and increased light had stronger positive direct effects on understorey herbaceous cover, which leads to slower decomposition rates, especially in more fertile soils. Therefore, the indirect effects of environmental changes related to the understorey layer on litter decomposition can be more important than their direct effects, thus should not be overlooked.
Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2019Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2019.107579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2019Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2019.107579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 14 Jul 2021 Qatar, France, Switzerland, France, Canada, Italy, Germany, Australia, Portugal, Austria, France, Denmark, Belgium, Qatar, France, Spain, France, Argentina, France, United Kingdom, Canada, Austria, Argentina, Portugal, FrancePublisher:Frontiers Media SA Funded by:EC | ECOWORM, EC | Med-N-Change, EC | eLTER PLUS +2 projectsEC| ECOWORM ,EC| Med-N-Change ,EC| eLTER PLUS ,FCT| Centre for Ecology, Evolution and Environmental Changes ,DFG| German Centre for Integrative Biodiversity Research - iDivTaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger K. Schmidt; Klaus S. Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean-Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Nico Eisenhauer; Ika Djukic; TeaComposition Network; TaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Ika Djukic; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alessandro Petraglia; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz-Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; Andrea Lamprecht; Andreas Bohner; André-Jean Francez; Andrey Malyshev; Andrijana Andrić; Angela Stanisci; Anita Zolles; Anna Avila; Anna-Maria Virkkala; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Artur Stefanski; Aurora Gaxiola; Bart Muys; Beatriz Gozalo; Bernd Ahrends; Bo Yang; Brigitta Erschbamer; Carmen Eugenia Rodríguez Ortíz; Casper T. Christiansen; Céline Meredieu; Cendrine Mony; Charles Nock; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dick Jan; Dirk Wundram; Dušanka Vujanović; E. Carol Adair; Eduardo Ordóñez-Regil; Edward R. Crawford; Elena F. Tropina; Elisabeth Hornung; Elli Groner; Eric Lucot; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Fábio Padilha Bolzan; Fernando T. Maestre; Florence Maunoury-Danger; Florian Kitz; Florian Hofhansl; Flurin Sutter; Francisco de Almeida Lobo; Franco Leadro Souza; Franz Zehetner; Fulgence Kouamé Koffi; Georg Wohlfahrt; Giacomo Certini; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Harald Pauli; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena Cristina Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hiroko Kurokawa; Ian Yesilonis; Inara Melece; Inge van Halder; Inmaculada García Quirós; István Fekete; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Hasan Shoqeir; Jean-Christophe Lata; Jean-Luc Probst; Jeyanny Vijayanathan; Jiri Dolezal; Joan-Albert Sanchez-Cabeza; Joël Merlet; John Loehr; Jonathan von Oppen; Jörg Löffler; José Luis Benito Alonso; José-Gilberto Cardoso-Mohedano; Josep Peñuelas; Joseph C. Morina; Juan Darío Quinde; Juan J. Jiménez; Juha M. Alatalo; Julia Seeber; Julia Kemppinen; Jutta Stadler; Kaie Kriiska; Karel Van den Meersche; Karibu Fukuzawa; Katalin Szlavecz; Katalin Juhos; Katarína Gerhátová; Kate Lajtha; Katie Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Klaus Steinbauer; Laryssa Pazianoto; Laura Dienstbach; Laura Yahdjian; Laura J. Williams; Laurel Brigham; Lee Hanna; Liesbeth van den Brink; Lindsey Rustad; Lourdes Morillas; Luciana Silva Carneiro; Luciano Di Martino; Luis Villar; Luísa Alícida Fernandes Tavares; Madison Morley; Manuela Winkler; Marc Lebouvier; Marcello Tomaselli; Marcus Schaub; Maria Glushkova; Maria Guadalupe Almazan Torres; Marie-Anne de Graaff; Marie-Noëlle Pons; Marijn Bauters; Marina Mazón; Mark Frenzel; Markus Wagner; Markus Didion; Maroof Hamid; Marta Lopes; Martha Apple; Martin Weih; Matej Mojses; Matteo Gualmini; Matthew Vadeboncoeur; Michael Bierbaumer; Michael Danger; Michael Scherer-Lorenzen; Michal Růžek; Michel Isabellon; Michele Di Musciano; Michele Carbognani; Miglena Zhiyanski; Mihai Puşcaş; Milan Barna; Mioko Ataka; Miska Luoto; Mohammed H. Alsafaran; Nadia Barsoum; Naoko Tokuchi; Nathalie Korboulewsky; Nicolas Lecomte;handle: 10261/275795 , 10576/40041 , 20.500.12123/9826 , 11336/166456 , 11695/119968 , 11585/872593 , 2158/1259496 , 1854/LU-8720292 , 1885/311153 , 11381/2931395 , 1959.7/uws:67032
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.
NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 90 Powered bymore_vert NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Wiley Duboc, Olivier; Dignac, Marie-France; Djukic, Ika; Zehetner, Franz; Gerzabek, Martin H.; Rumpel, Cornelia;doi: 10.1111/gcb.12497
pmid: 24323640
AbstractLignin is an aromatic plant compound that decomposes more slowly than other organic matter compounds; however, it was recently shown that lignin could decompose as fast as litter bulk carbon in minerals soils. In alpine Histosols, where organic matter dynamics is largely unaffected by mineral constituents, lignin may be an important part of soil organic matter (SOM). These soils are expected to experience alterations in temperature and/or physicochemical parameters as a result of global climate change. The effect of these changes on lignin dynamics remains to be examined and the importance of lignin as SOM compound in these soils evaluated. Here, we investigated the decomposition of individual lignin phenols of maize litter incubated for 2 years in‐situ in Histosols on an Alpine elevation gradient (900, 1300, and 1900 m above sea level); to this end, we used the cupric oxide oxidation method and determined the phenols’ 13C signature. Maize lignin decomposed faster than bulk maize carbon in the first year (86 vs. 78% decomposed); however, after the second year, lignin and bulk C decomposition did not differ significantly. Lignin mass loss did not correlate with soil temperature after the first year, and even correlated negatively at the end of the second year. Lignin mass loss also correlated negatively with the remaining maize N at the end of the second year, and we interpreted this result as a possible negative influence of nitrogen on lignin degradation, although other factors (notably the depletion of easily degradable carbon sources) may also have played a role at this stage of decomposition. Microbial community composition did not correlate with lignin mass loss, but it did so with the lignin degradation indicators (Ac/Al)s and S/V after 2 years of decomposition. Progressing substrate decomposition toward the final stages thus appears to be linked with microbial community differentiation.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Jan 2017 SwitzerlandPublisher:Springer Science and Business Media LLC Solly, Emily F; Djukic, Ika; Moiseev, Pavel A; Andreyashkina, Nelly I; Devi, Nadezhda M; Göransson, Hans; Mazepa, Valeriy S; Shiyatov, Stepan G; Trubina, Marina R; Schweingruber, Fritz H; Wilmking, Martin; Hagedorn, Frank;pmid: 27904966
Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.
Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3785-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3785-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Oxford University Press (OUP) Andrea Watzinger; Martin H. Gerzabek; Ika Djukic; Micha Horacek; Franz Zehetner;pmid: 22809312
Litter decomposition represents one of the largest fluxes in the global terrestrial carbon cycle. The aim of this study was to improve our understanding of the factors governing decomposition in alpine ecosystems and how their responses to changing environmental conditions change over time. Our study area stretches over an elevation gradient of 1000 m on the Hochschwab massif in the Northern Limestone Alps of Austria. We used high-to-low elevation soil translocation to simulate the combined effects of changing climatic conditions, shifting vegetation zones, and altered snow cover regimes. In original and translocated soils, we conducted in situ decomposition experiments with maize litter and studied carbon turnover dynamics as well as temporal response patterns of the pathways of carbon during microbial decomposition over a 2-year incubation period. A simulated mean annual soil warming (through down-slope translocation) of 1.5 and 2.7 °C, respectively, resulted in a significantly accelerated turnover of added maize carbon. Changes in substrate quantity and quality in the course of the decomposition appeared to have less influence on the microbial community composition and its substrate utilization than the prevailing environmental/site conditions, to which the microbial community adapted quickly upon change. In general, microbial community composition and function significantly affected substrate decomposition rates only in the later stage of decomposition when the differentiation in substrate use among the microbial groups became more evident. Our study demonstrated that rising temperatures in alpine ecosystems may accelerate decomposition of litter carbon and also lead to a rapid adaptation of the microbial communities to the new environmental conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2012.01449.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1574-6941.2012.01449.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 BelgiumPublisher:Elsevier BV Funded by:EC | PASTFORWARDEC| PASTFORWARDWang, Bin; Blondeel, Haben; Baeten, Lander; Djukic, Ika; De Lombaerde, Emiel; Verheyen, Kris;handle: 1854/LU-8631503
Human-induced environmental changes in temperature, light availability due to forest canopy management, nitrogen deposition, and land-use legacies can alter ecosystem processes such as litter decomposition. These influences can be both direct and indirect via altering the performance of understorey vegetation. To identify the direct and indirect effects of environmental changes on litter decomposition, we performed an experiment with standardised green and rooibos teas. The experiment was conducted in a temperate mixed deciduous forest, and treatments (temperature, light, and nitrogen) were applied to mesocosms filled with ancient and post-agricultural forest soil. Both green tea and rooibos teas were more rapidly decomposed in oligotrophic soil than in eutrophic soil. The direct effects of the treatments on litter decomposition varied among the two litter types, incubation times, and soil fertility groups. Warming and agricultural legacy had a negative direct effect on the decomposition of the green tea in the high soil fertility treatment during the early decomposition stage. In contrast, agricultural legacy had a positive direct effect on the decomposition of rooibos tea. Soil enriched with nitrogen had a negative direct effect on the decomposition of green tea in mesotrophic soil in the early decomposition stage and on rooibos tea in later stage. The indirect effects of the treatments were consistently negative, as treatments (especially the temperature and light treatments in the early decomposition stage) had a positive effect on plant cover, which negatively affected litter decomposition. Our results indicate that warming, increased nitrogen deposition, and land use legacy can directly stimulate the decomposition of labile litter on more fertile soils. Furthermore, warming and increased light had stronger positive direct effects on understorey herbaceous cover, which leads to slower decomposition rates, especially in more fertile soils. Therefore, the indirect effects of environmental changes related to the understorey layer on litter decomposition can be more important than their direct effects, thus should not be overlooked.
Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2019Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2019.107579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2019Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2019.107579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 14 Jul 2021 Qatar, France, Switzerland, France, Canada, Italy, Germany, Australia, Portugal, Austria, France, Denmark, Belgium, Qatar, France, Spain, France, Argentina, France, United Kingdom, Canada, Austria, Argentina, Portugal, FrancePublisher:Frontiers Media SA Funded by:EC | ECOWORM, EC | Med-N-Change, EC | eLTER PLUS +2 projectsEC| ECOWORM ,EC| Med-N-Change ,EC| eLTER PLUS ,FCT| Centre for Ecology, Evolution and Environmental Changes ,DFG| German Centre for Integrative Biodiversity Research - iDivTaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger K. Schmidt; Klaus S. Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean-Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Nico Eisenhauer; Ika Djukic; TeaComposition Network; TaeOh Kwon; Hideaki Shibata; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Jean Francois Lamarque; Frank Hagedorn; Nico Eisenhauer; Ika Djukic; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alessandro Petraglia; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz-Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; Andrea Lamprecht; Andreas Bohner; André-Jean Francez; Andrey Malyshev; Andrijana Andrić; Angela Stanisci; Anita Zolles; Anna Avila; Anna-Maria Virkkala; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Artur Stefanski; Aurora Gaxiola; Bart Muys; Beatriz Gozalo; Bernd Ahrends; Bo Yang; Brigitta Erschbamer; Carmen Eugenia Rodríguez Ortíz; Casper T. Christiansen; Céline Meredieu; Cendrine Mony; Charles Nock; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dick Jan; Dirk Wundram; Dušanka Vujanović; E. Carol Adair; Eduardo Ordóñez-Regil; Edward R. Crawford; Elena F. Tropina; Elisabeth Hornung; Elli Groner; Eric Lucot; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Fábio Padilha Bolzan; Fernando T. Maestre; Florence Maunoury-Danger; Florian Kitz; Florian Hofhansl; Flurin Sutter; Francisco de Almeida Lobo; Franco Leadro Souza; Franz Zehetner; Fulgence Kouamé Koffi; Georg Wohlfahrt; Giacomo Certini; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Harald Pauli; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena Cristina Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hiroko Kurokawa; Ian Yesilonis; Inara Melece; Inge van Halder; Inmaculada García Quirós; István Fekete; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Hasan Shoqeir; Jean-Christophe Lata; Jean-Luc Probst; Jeyanny Vijayanathan; Jiri Dolezal; Joan-Albert Sanchez-Cabeza; Joël Merlet; John Loehr; Jonathan von Oppen; Jörg Löffler; José Luis Benito Alonso; José-Gilberto Cardoso-Mohedano; Josep Peñuelas; Joseph C. Morina; Juan Darío Quinde; Juan J. Jiménez; Juha M. Alatalo; Julia Seeber; Julia Kemppinen; Jutta Stadler; Kaie Kriiska; Karel Van den Meersche; Karibu Fukuzawa; Katalin Szlavecz; Katalin Juhos; Katarína Gerhátová; Kate Lajtha; Katie Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Klaus Steinbauer; Laryssa Pazianoto; Laura Dienstbach; Laura Yahdjian; Laura J. Williams; Laurel Brigham; Lee Hanna; Liesbeth van den Brink; Lindsey Rustad; Lourdes Morillas; Luciana Silva Carneiro; Luciano Di Martino; Luis Villar; Luísa Alícida Fernandes Tavares; Madison Morley; Manuela Winkler; Marc Lebouvier; Marcello Tomaselli; Marcus Schaub; Maria Glushkova; Maria Guadalupe Almazan Torres; Marie-Anne de Graaff; Marie-Noëlle Pons; Marijn Bauters; Marina Mazón; Mark Frenzel; Markus Wagner; Markus Didion; Maroof Hamid; Marta Lopes; Martha Apple; Martin Weih; Matej Mojses; Matteo Gualmini; Matthew Vadeboncoeur; Michael Bierbaumer; Michael Danger; Michael Scherer-Lorenzen; Michal Růžek; Michel Isabellon; Michele Di Musciano; Michele Carbognani; Miglena Zhiyanski; Mihai Puşcaş; Milan Barna; Mioko Ataka; Miska Luoto; Mohammed H. Alsafaran; Nadia Barsoum; Naoko Tokuchi; Nathalie Korboulewsky; Nicolas Lecomte;handle: 10261/275795 , 10576/40041 , 20.500.12123/9826 , 11336/166456 , 11695/119968 , 11585/872593 , 2158/1259496 , 1854/LU-8720292 , 1885/311153 , 11381/2931395 , 1959.7/uws:67032
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.
NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 120visibility views 120 download downloads 90 Powered bymore_vert NERC Open Research A... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2021 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteInstitut National Polytechnique de Toulouse (Theses)Article . 2021 . Peer-reviewedData sources: Institut National Polytechnique de Toulouse (Theses)Flore (Florence Research Repository)Article . 2021License: CC BYFull-Text: https://flore.unifi.it/bitstream/2158/1259496/1/Frontiers%20in%20Forests%20and%20Global%20Change.pdfData sources: Flore (Florence Research Repository)University of Freiburg: FreiDokArticle . 2021Full-Text: https://freidok.uni-freiburg.de/data/229972Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/311153Data sources: Bielefeld Academic Search Engine (BASE)OATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03403978Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryServeur académique lausannoisArticle . 2021License: CC BYData sources: Serveur académique lausannoisUniversidade de Lisboa: Repositório.ULArticle . 2021License: CC BYData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2021Data sources: Copenhagen University Research Information SystemFrontiers in Forests and Global ChangeArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/10.3389/ffgc...Article . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2021Data sources: Universitätsbibliographie, Universität Duisburg-EssenArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2021.678480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Wiley Duboc, Olivier; Dignac, Marie-France; Djukic, Ika; Zehetner, Franz; Gerzabek, Martin H.; Rumpel, Cornelia;doi: 10.1111/gcb.12497
pmid: 24323640
AbstractLignin is an aromatic plant compound that decomposes more slowly than other organic matter compounds; however, it was recently shown that lignin could decompose as fast as litter bulk carbon in minerals soils. In alpine Histosols, where organic matter dynamics is largely unaffected by mineral constituents, lignin may be an important part of soil organic matter (SOM). These soils are expected to experience alterations in temperature and/or physicochemical parameters as a result of global climate change. The effect of these changes on lignin dynamics remains to be examined and the importance of lignin as SOM compound in these soils evaluated. Here, we investigated the decomposition of individual lignin phenols of maize litter incubated for 2 years in‐situ in Histosols on an Alpine elevation gradient (900, 1300, and 1900 m above sea level); to this end, we used the cupric oxide oxidation method and determined the phenols’ 13C signature. Maize lignin decomposed faster than bulk maize carbon in the first year (86 vs. 78% decomposed); however, after the second year, lignin and bulk C decomposition did not differ significantly. Lignin mass loss did not correlate with soil temperature after the first year, and even correlated negatively at the end of the second year. Lignin mass loss also correlated negatively with the remaining maize N at the end of the second year, and we interpreted this result as a possible negative influence of nitrogen on lignin degradation, although other factors (notably the depletion of easily degradable carbon sources) may also have played a role at this stage of decomposition. Microbial community composition did not correlate with lignin mass loss, but it did so with the lignin degradation indicators (Ac/Al)s and S/V after 2 years of decomposition. Progressing substrate decomposition toward the final stages thus appears to be linked with microbial community differentiation.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Jan 2017 SwitzerlandPublisher:Springer Science and Business Media LLC Solly, Emily F; Djukic, Ika; Moiseev, Pavel A; Andreyashkina, Nelly I; Devi, Nadezhda M; Göransson, Hans; Mazepa, Valeriy S; Shiyatov, Stepan G; Trubina, Marina R; Schweingruber, Fritz H; Wilmking, Martin; Hagedorn, Frank;pmid: 27904966
Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.
Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3785-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down Zurich Open Repository and ArchiveArticle . 2017 . Peer-reviewedData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-016-3785-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu