- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:The Royal Society Funded by:UKRI | Ocean Acidification Impac...UKRI| Ocean Acidification Impacts on Sea-Surface Biology, Biogeochemistry and ClimateSamantha J. Gibbs; Rosie M. Sheward; Paul R. Bown; Alex J. Poulton; Sarah A. Alvarez;pmid: 30177560
pmc: PMC6127380
Past global warming events such as the Palaeocene–Eocene Thermal Maximum (PETM—56 Ma) are attributed to the release of vast amounts of carbon into the ocean, atmosphere and biosphere with recovery ascribed to a combination of silicate weathering and organic carbon burial. The phytoplanktonic nannoplankton are major contributors of organic and inorganic carbon but their role in this recovery process remains poorly understood and complicated by their contribution to marine calcification. Biocalcification is implicated not only in long-term carbon burial but also both short-term positive and negative climatic feedbacks associated with seawater buffering and responses to ocean acidification. Here, we use exceptional records of preserved fossil coccospheres to reconstruct cell size distribution, biomass production (particulate organic carbon, POC) and (particulate) inorganic carbon (PIC) yields of three contrasting nannoplankton communities (Bass River—outer shelf, Maud Rise—uppermost bathyal, Shatsky Rise—open ocean) through the PETM onset and recovery. Each of the sites shows contrasting community responses across the PETM as a function of their taxic composition and total community biomass. Our results indicate that nannoplankton PIC:POC had no role in short-term climate feedback and, as such, their importance as a source of CO2to the environment is a red herring. It is nevertheless likely that shifts to greater numbers of smaller cells at the shelf site in particular led to greater carbon transfer efficiency, and that nannoplankton productivity and export across the shelves had a significant modulating effect on carbon sequestration during the PETM recovery.This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2017.0075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 15 Powered bymore_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2017.0075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2013Publisher:PANGAEA Authors: Poulton, Alex J; Stinchcombe, Mark Colin; Quartly, Graham D;Richelia counts are derived from Rhizosolenia cell counts: assuming each Rhizosolenia cell contains 5 Richelia trichomes and each Richelia trichome contains 5 cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.816625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.816625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Funded by:UKRI | Ocean-ICU Improving Carbo..., UKRI | CoccoTrait: Revealing Coc...UKRI| Ocean-ICU Improving Carbon Understanding ,UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsRosie M. Sheward; Alex J. Poulton; Jeremy R. Young; Joost de Vries; Fanny M. Monteiro; Jens O. Herrle;pmid: 38956105
AbstractCalcification and biomass production by planktonic marine organisms influences the global carbon cycle and fuels marine ecosystems. The major calcifying plankton group coccolithophores are highly diverse, comprising ca. 250–300 extant species. However, coccolithophore size (a key functional trait) and degree of calcification are poorly quantified, as most of our understanding of this group comes from a small number of species. We generated a novel reference dataset of coccolithophore morphological traits, including cell-specific data for coccosphere and cell size, coccolith size, number of coccoliths per cell, and cellular calcite content. This dataset includes observations from 1074 individual cells and represents 61 species from 25 genera spanning equatorial to temperate coccolithophore populations that were sampled during the Atlantic Meridional Transect (AMT) 14 cruise in 2004. This unique dataset can be used to explore relationships between morphological traits (cell size and cell calcite) and environmental conditions, investigate species-specific and community contributions to pelagic carbonate production, export and plankton biomass, and inform and validate coccolithophore representation in marine ecosystem and biogeochemical models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03544-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03544-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:UKRI | CoccoTrait: Revealing Coc...UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsde Vries, Joost; Poulton, Alex J.; Young, Jeremy R.; Monteiro, Fanny M.; Sheward, Rosie M.; Johnson, Roberta; Hagino, Kyoko; Ziveri, Patrizia; Wolf, Levi J.;CASCADE is a global dataset for 139 extant coccolithophore taxonomic units. CASCADE includes a trait database (size and cellular organic and inorganic carbon contents) and taxonomic-specific global spatiotemporal distributions (Lat/Lon/Depth/Month/Year) of coccolithophore abundance and organic and inorganic carbon stocks. CASCADE covers all ocean basins over the upper 275 meters, spans the years 1964-2019 and includes 33,119 taxonomic-specific abundance observations. Within CASCADE, we characterise the underlying uncertainties due to measurement errors by propagating error estimates between the different studies. Full details of the data set are provided in the associated Scientific Data manuscript. The repository contains five main folders: 1) "Classification", which contains YAML files with synonyms, family-level classifications, and life cycle phase associations and definitions; 2) "Concatenated literature", which contains the merged datasets of size, PIC and POC and which were corrected for taxonomic unit synonyms; 3) "Resampled cellular datasets", which contains the resampled datasets of size, PIC and POC in long format as well as a summary table; 4) "Gridded data sets", which contains gridded datasets of abundance, PIC and POC; 5) "Species lists", which contains spreadsheets of the "common" (>20 obs) and "rare" (<20 obs) species and their number of observations. The CASCADE data set can be easily reproduced using the scripts and data provided in the associated github repository: https://github.com/nanophyto/CASCADE/ (zenodo.12797197) Correspondence to: Joost de Vries, joost.devries@bristol.ac.uk v.0.1.2 has some fixes: 1. The wrongly specified S. neapolitana was removed from synonyms.yml (this species is now S. nana)2. Longitudes were corrected for Guerreiro et al., 20233. A double entry for Dimizia et al., 2015 was fixed4. Units in Sal et al., 2013 were correct to cells/L (previously cells/ml)5. Data from Sal et al., 2013 was re-done, as some species were missing6. Duplicate entries from Baumann et al., 2000 were dropped
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2014 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Abrupt Ocean Acidificatio..., UKRI | Doctoral Training Grant (...UKRI| Abrupt Ocean Acidification Events ,UKRI| Doctoral Training Grant (DTG) to provide funding for 10 PhD studentship(s)O’Dea, Sarah A.; Gibbs, Samantha J.; Bown, Paul R.; Young, Jeremy R.; Poulton, Alex J.; Newsam, Cherry; Wilson, Paul A.;AbstractAnthropogenic carbon dioxide emissions are forcing rapid ocean chemistry changes and causing ocean acidification (OA), which is of particular significance for calcifying organisms, including planktonic coccolithophores. Detailed analysis of coccolithophore skeletons enables comparison of calcite production in modern and fossil cells in order to investigate biomineralization response of ancient coccolithophores to climate change. Here we show that the two dominant coccolithophore taxa across the Paleocene–Eocene Thermal Maximum (PETM) OA global warming event (~56 million years ago) exhibited morphological response to environmental change and both showed reduced calcification rates. However, only Coccolithus pelagicus exhibits a transient thinning of coccoliths, immediately before the PETM, that may have been OA-induced. Changing coccolith thickness may affect calcite production more significantly in the dominant modern species Emiliania huxleyi, but, overall, these PETM records indicate that the environmental factors that govern taxonomic composition and growth rate will most strongly influence coccolithophore calcification response to anthropogenic change.
e-Prints Soton arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 49 Powered bymore_vert e-Prints Soton arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United States, United States, United Kingdom, Spain, United Kingdom, France, Spain, United KingdomPublisher:Copernicus GmbH Funded by:FCT | LA 22FCT| LA 22Leblanc, K.; Arístegui, J.; Armand, L.; Assmy, P.; Beker, B.; Bode, A. (Antonio); Breton, E.; Cornet, V.; Gibson, J.; Varela-Rodríguez, M. (Manuel); Gosselin, M.P.; Kopczynska, E.; Marshall, H.; Peloquin, J.; Piontkovski, S.; Poulton, A.J.; Quéguiner, B.; Schiebel, R.; Schiebel, R.; Shipe, R.; Stefels, J.; van Leeuwe, M.A.; Widdicombe, C. (Claire); Yallop, M.;Abstract. Phytoplankton identification and abundance data are now commonly feeding plankton distribution databases worldwide. This study is a first attempt to compile the largest possible body of data available from different databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Model Inter-Comparison Project (MAREMIP), which aims at building consistent datasets for the main Plankton Functional Types (PFT) in order to help validate biogeochemical ocean models by using carbon (C) biomass derived from abundance data. In this study we collected over 293 000 individual geo-referenced data points with diatom abundances from bottle and net sampling. Sampling site distribution was not homogeneous, with 58% of data in the Atlantic, 20% in the Arctic, 12% in the Pacific, 8% in the Indian and 1% in the Southern Ocean. A total of 136 different genera and 607 different species were identified after spell checking and name correction. Only a small fraction of these data were also documented for biovolumes and an even smaller fraction was converted to C biomass. As it is virtually impossible to reconstruct everyone's method for biovolume calculation, which is usually not indicated in the datasets, we decided to undertake the effort to document, for every distinct species, the minimum and maximum cell dimensions, and to convert all the available abundance data into biovolumes and C biomass using a single standardized method. Statistical correction of the database was also adopted to exclude potential outliers and suspicious data points. The final database contains 90 648 data points with converted C biomass. Diatom C biomass calculated from cell sizes spans over eight orders of magnitude. The mean diatom biomass for individual locations, dates and depths is 141.19 μg C l−1, while the median value is 11.16 μg C l−1. Regarding biomass distribution, 19% of data are in the range 0–1 μg C l−1, 29% in the range 1–10 μg C l−1, 31% in the range 10–100 μg C l−1, 18% in the range 100–1000 μg C l−1, and only 3% >1000 μg C l−1. Interestingly, less than 50 species contributed to >90% of global biomass, among which centric species were dominant. Thus, placing significant efforts on cell size measurements, process studies and C quota calculations on these species should considerably improve biomass estimates in the upcoming years. A first-order estimate of the diatom biomass for the global ocean ranges from 449 to 558 Tg C, which converts to 5 to 6 Tmol Si and to an average Si biomass turnover rate of 0.11 to 0.20 d−1. Link to the dataset: preliminary link http://doi.pangaea.de/10.1594/PANGAEA.777384.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-00756934Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2012Full-Text: https://hal.science/hal-00756934Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2012License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverUniversity of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-5-147-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 172 citations 172 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 41 Powered bymore_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-00756934Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2012Full-Text: https://hal.science/hal-00756934Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2012License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverUniversity of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-5-147-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:The Royal Society Funded by:UKRI | Ocean Acidification Impac...UKRI| Ocean Acidification Impacts on Sea-Surface Biology, Biogeochemistry and ClimateSamantha J. Gibbs; Rosie M. Sheward; Paul R. Bown; Alex J. Poulton; Sarah A. Alvarez;pmid: 30177560
pmc: PMC6127380
Past global warming events such as the Palaeocene–Eocene Thermal Maximum (PETM—56 Ma) are attributed to the release of vast amounts of carbon into the ocean, atmosphere and biosphere with recovery ascribed to a combination of silicate weathering and organic carbon burial. The phytoplanktonic nannoplankton are major contributors of organic and inorganic carbon but their role in this recovery process remains poorly understood and complicated by their contribution to marine calcification. Biocalcification is implicated not only in long-term carbon burial but also both short-term positive and negative climatic feedbacks associated with seawater buffering and responses to ocean acidification. Here, we use exceptional records of preserved fossil coccospheres to reconstruct cell size distribution, biomass production (particulate organic carbon, POC) and (particulate) inorganic carbon (PIC) yields of three contrasting nannoplankton communities (Bass River—outer shelf, Maud Rise—uppermost bathyal, Shatsky Rise—open ocean) through the PETM onset and recovery. Each of the sites shows contrasting community responses across the PETM as a function of their taxic composition and total community biomass. Our results indicate that nannoplankton PIC:POC had no role in short-term climate feedback and, as such, their importance as a source of CO2to the environment is a red herring. It is nevertheless likely that shifts to greater numbers of smaller cells at the shelf site in particular led to greater carbon transfer efficiency, and that nannoplankton productivity and export across the shelves had a significant modulating effect on carbon sequestration during the PETM recovery.This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2017.0075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 15 Powered bymore_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWallUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2017.0075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2013Publisher:PANGAEA Authors: Poulton, Alex J; Stinchcombe, Mark Colin; Quartly, Graham D;Richelia counts are derived from Rhizosolenia cell counts: assuming each Rhizosolenia cell contains 5 Richelia trichomes and each Richelia trichome contains 5 cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.816625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.816625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Funded by:UKRI | Ocean-ICU Improving Carbo..., UKRI | CoccoTrait: Revealing Coc...UKRI| Ocean-ICU Improving Carbon Understanding ,UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsRosie M. Sheward; Alex J. Poulton; Jeremy R. Young; Joost de Vries; Fanny M. Monteiro; Jens O. Herrle;pmid: 38956105
AbstractCalcification and biomass production by planktonic marine organisms influences the global carbon cycle and fuels marine ecosystems. The major calcifying plankton group coccolithophores are highly diverse, comprising ca. 250–300 extant species. However, coccolithophore size (a key functional trait) and degree of calcification are poorly quantified, as most of our understanding of this group comes from a small number of species. We generated a novel reference dataset of coccolithophore morphological traits, including cell-specific data for coccosphere and cell size, coccolith size, number of coccoliths per cell, and cellular calcite content. This dataset includes observations from 1074 individual cells and represents 61 species from 25 genera spanning equatorial to temperate coccolithophore populations that were sampled during the Atlantic Meridional Transect (AMT) 14 cruise in 2004. This unique dataset can be used to explore relationships between morphological traits (cell size and cell calcite) and environmental conditions, investigate species-specific and community contributions to pelagic carbonate production, export and plankton biomass, and inform and validate coccolithophore representation in marine ecosystem and biogeochemical models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03544-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-024-03544-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Funded by:UKRI | CoccoTrait: Revealing Coc...UKRI| CoccoTrait: Revealing Coccolithophore Trait diversity and its climatic impactsde Vries, Joost; Poulton, Alex J.; Young, Jeremy R.; Monteiro, Fanny M.; Sheward, Rosie M.; Johnson, Roberta; Hagino, Kyoko; Ziveri, Patrizia; Wolf, Levi J.;CASCADE is a global dataset for 139 extant coccolithophore taxonomic units. CASCADE includes a trait database (size and cellular organic and inorganic carbon contents) and taxonomic-specific global spatiotemporal distributions (Lat/Lon/Depth/Month/Year) of coccolithophore abundance and organic and inorganic carbon stocks. CASCADE covers all ocean basins over the upper 275 meters, spans the years 1964-2019 and includes 33,119 taxonomic-specific abundance observations. Within CASCADE, we characterise the underlying uncertainties due to measurement errors by propagating error estimates between the different studies. Full details of the data set are provided in the associated Scientific Data manuscript. The repository contains five main folders: 1) "Classification", which contains YAML files with synonyms, family-level classifications, and life cycle phase associations and definitions; 2) "Concatenated literature", which contains the merged datasets of size, PIC and POC and which were corrected for taxonomic unit synonyms; 3) "Resampled cellular datasets", which contains the resampled datasets of size, PIC and POC in long format as well as a summary table; 4) "Gridded data sets", which contains gridded datasets of abundance, PIC and POC; 5) "Species lists", which contains spreadsheets of the "common" (>20 obs) and "rare" (<20 obs) species and their number of observations. The CASCADE data set can be easily reproduced using the scripts and data provided in the associated github repository: https://github.com/nanophyto/CASCADE/ (zenodo.12797197) Correspondence to: Joost de Vries, joost.devries@bristol.ac.uk v.0.1.2 has some fixes: 1. The wrongly specified S. neapolitana was removed from synonyms.yml (this species is now S. nana)2. Longitudes were corrected for Guerreiro et al., 20233. A double entry for Dimizia et al., 2015 was fixed4. Units in Sal et al., 2013 were correct to cells/L (previously cells/ml)5. Data from Sal et al., 2013 was re-done, as some species were missing6. Duplicate entries from Baumann et al., 2000 were dropped
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13736214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2014 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Abrupt Ocean Acidificatio..., UKRI | Doctoral Training Grant (...UKRI| Abrupt Ocean Acidification Events ,UKRI| Doctoral Training Grant (DTG) to provide funding for 10 PhD studentship(s)O’Dea, Sarah A.; Gibbs, Samantha J.; Bown, Paul R.; Young, Jeremy R.; Poulton, Alex J.; Newsam, Cherry; Wilson, Paul A.;AbstractAnthropogenic carbon dioxide emissions are forcing rapid ocean chemistry changes and causing ocean acidification (OA), which is of particular significance for calcifying organisms, including planktonic coccolithophores. Detailed analysis of coccolithophore skeletons enables comparison of calcite production in modern and fossil cells in order to investigate biomineralization response of ancient coccolithophores to climate change. Here we show that the two dominant coccolithophore taxa across the Paleocene–Eocene Thermal Maximum (PETM) OA global warming event (~56 million years ago) exhibited morphological response to environmental change and both showed reduced calcification rates. However, only Coccolithus pelagicus exhibits a transient thinning of coccoliths, immediately before the PETM, that may have been OA-induced. Changing coccolith thickness may affect calcite production more significantly in the dominant modern species Emiliania huxleyi, but, overall, these PETM records indicate that the environmental factors that govern taxonomic composition and growth rate will most strongly influence coccolithophore calcification response to anthropogenic change.
e-Prints Soton arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 49 Powered bymore_vert e-Prints Soton arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United States, United States, United Kingdom, Spain, United Kingdom, France, Spain, United KingdomPublisher:Copernicus GmbH Funded by:FCT | LA 22FCT| LA 22Leblanc, K.; Arístegui, J.; Armand, L.; Assmy, P.; Beker, B.; Bode, A. (Antonio); Breton, E.; Cornet, V.; Gibson, J.; Varela-Rodríguez, M. (Manuel); Gosselin, M.P.; Kopczynska, E.; Marshall, H.; Peloquin, J.; Piontkovski, S.; Poulton, A.J.; Quéguiner, B.; Schiebel, R.; Schiebel, R.; Shipe, R.; Stefels, J.; van Leeuwe, M.A.; Widdicombe, C. (Claire); Yallop, M.;Abstract. Phytoplankton identification and abundance data are now commonly feeding plankton distribution databases worldwide. This study is a first attempt to compile the largest possible body of data available from different databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Model Inter-Comparison Project (MAREMIP), which aims at building consistent datasets for the main Plankton Functional Types (PFT) in order to help validate biogeochemical ocean models by using carbon (C) biomass derived from abundance data. In this study we collected over 293 000 individual geo-referenced data points with diatom abundances from bottle and net sampling. Sampling site distribution was not homogeneous, with 58% of data in the Atlantic, 20% in the Arctic, 12% in the Pacific, 8% in the Indian and 1% in the Southern Ocean. A total of 136 different genera and 607 different species were identified after spell checking and name correction. Only a small fraction of these data were also documented for biovolumes and an even smaller fraction was converted to C biomass. As it is virtually impossible to reconstruct everyone's method for biovolume calculation, which is usually not indicated in the datasets, we decided to undertake the effort to document, for every distinct species, the minimum and maximum cell dimensions, and to convert all the available abundance data into biovolumes and C biomass using a single standardized method. Statistical correction of the database was also adopted to exclude potential outliers and suspicious data points. The final database contains 90 648 data points with converted C biomass. Diatom C biomass calculated from cell sizes spans over eight orders of magnitude. The mean diatom biomass for individual locations, dates and depths is 141.19 μg C l−1, while the median value is 11.16 μg C l−1. Regarding biomass distribution, 19% of data are in the range 0–1 μg C l−1, 29% in the range 1–10 μg C l−1, 31% in the range 10–100 μg C l−1, 18% in the range 100–1000 μg C l−1, and only 3% >1000 μg C l−1. Interestingly, less than 50 species contributed to >90% of global biomass, among which centric species were dominant. Thus, placing significant efforts on cell size measurements, process studies and C quota calculations on these species should considerably improve biomass estimates in the upcoming years. A first-order estimate of the diatom biomass for the global ocean ranges from 449 to 558 Tg C, which converts to 5 to 6 Tmol Si and to an average Si biomass turnover rate of 0.11 to 0.20 d−1. Link to the dataset: preliminary link http://doi.pangaea.de/10.1594/PANGAEA.777384.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-00756934Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2012Full-Text: https://hal.science/hal-00756934Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2012License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverUniversity of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-5-147-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 172 citations 172 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 41 Powered bymore_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Old Dominion University: ODU Digital CommonsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Full-Text: https://hal.science/hal-00756934Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2012Full-Text: https://hal.science/hal-00756934Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2012License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverUniversity of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-5-147-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu