- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Thian Yew Gan; Shereif H. Mahmoud;pmid: 29758885
The implications of anthropogenic climate change, human activities and land use change (LUC) on the environment and ecosystem services in the coastal regions of Saudi Arabia were analyzed. Earth observations data was used to drive land use categories between 1970 and 2014. Next, a Markov-CA model was developed to characterize the dynamic of LUC between 2014 and 2100 and their impacts on regions' climate and environment. Non-parametric change point and trend detection algorithms were applied to temperature, precipitation and greenhouse gases data to investigate the presence of anthropogenic climate change. Lastly, climate models were used to project future climate change between 2014 and 2100. The analysis of LUC revealed that between 1970 and 2014, built up areas experienced the greatest growth during the study period, leading to a significant monotonic trend. Urban areas increased by 2349.61km2 between 1970 and 2014, an average increase of >53.4km2/yr. The projected LUC between 2014 and 2100 indicate a continued increase in urban areas and irrigated cropland. Human alteration of land use from natural vegetation and forests to other uses after 1970, resulted in a loss, degradation, and fragmentation, all of which usually have devastating effects on the biodiversity of the region. Resulting in a statistically significant change point in temperature anomaly after 1968 with a warming trend of 0.24°C/decade and a downward trend in precipitation anomaly of 12.2mm/decade. Total greenhouse gas emissions including all anthropogenic sources showed a statistically significant positive trend of 78,090Kt/decade after 1991. This is reflected in the future projection of temperature anomaly between 1900 and 2100 with a future warming trend of 0.19°C/decade. In conclusion, human activities, industrial revelation, deforestation, land use transformation and increase in greenhouse gases had significant implications on the environment and ecosystem services of the study area.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.03.290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu166 citations 166 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.03.290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, United Kingdom, FrancePublisher:Wiley Funded by:NSF | Department of Energy (DoE..., NSF | DOE Support to Analyze Va..., UKRI | Securing Multidisciplinar...NSF| Department of Energy (DoE) Support of the National Center for Atmospheric Research Activities ,NSF| DOE Support to Analyze Variability, Change and Predictability in the Earth System ,UKRI| Securing Multidisciplinary UndeRstanding and Prediction of Hiatus and Surge events (SMURPHS)Mathew Barlow; Laura Wilcox; Thian Yew Gan; Abigail L. S. Swann; Olga Zolina; Olga Zolina; Annalisa Cherchi; Angeline G. Pendergrass; Richard P. Allan; Hayley J. Fowler; Michael P. Byrne; Michael P. Byrne; Daniel Rosenfeld; Daniel Rosenfeld; Hervé Douville;AbstractGlobally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2–3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in‐storm and larger‐scale feedback processes, while changes in large‐scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population.
CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2020License: CC BYFull-Text: https://hdl.handle.net/10023/19765Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 369 citations 369 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2020License: CC BYFull-Text: https://hdl.handle.net/10023/19765Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Xuezhi Tan; Thian Yew Gan;AbstractClimate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep17767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep17767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Daniel E. Horton; Xuezhi Tan; Xuezhi Tan; Thian Yew Gan;doi: 10.1111/gcb.14329
pmid: 29802780
AbstractHuman and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extremes exceed their historical windows of variability within impact‐relevant socioeconomic, geopolitical, and ecological domains, we investigate the timing of perceivable changes (time of emergence; TOE) for 18 magnitude‐, frequency‐, and severity‐based extreme temperature (10) and precipitation (8) indices using both multimodel and single‐model multirealization ensembles. Under a high‐emission scenario, we find that the signal of frequency‐ and severity‐based temperature extremes is projected to rise above historical noise earliest in midlatitudes, whereas magnitude‐based temperature extremes emerge first in low and high latitudes. Precipitation extremes demonstrate different emergence patterns, with severity‐based indices first emerging over midlatitudes, and magnitude‐ and frequency‐based indices emerging earliest in low and high latitudes. Applied to impact‐relevant domains, simulated TOE patterns suggest (a) unprecedented consecutive dry day occurrence in >50% of 14 terrestrial biomes and 12 marine realms prior to 2100, (b) earlier perceivable changes in climate extremes in countries with lower per capita GDP, and (c) emergence of severe and frequent heat extremes well‐before 2030 for the 590 most populous urban centers. Elucidating extreme‐metric and domain‐type TOE heterogeneities highlights the challenges adaptation planners face in confronting the consequences of elevated twenty‐first century radiative forcing.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Wiley Gan, Kai Ernn; Taikan, Oki; Gan, Thian Yew; Weis, Tim; Yamazaki, Dai; Schüttrumpf, Holger;Climate change impacts due to unprecedented rising concentrations of greenhouse gas (GHG) are intensifying and widespread, making extreme climate events more widespread, frequent, and severe. To mitigate the worst consequences of climate warming, herein it is investigated how the global community can collectively achieve a large‐scale, sustained reduction in GHG emissions, and how to effectively move away from a predominantly fossil fuel‐based economy to one dominated by renewable energy? This transition is necessary to achieve the sustainable development goals (SDGs) of United Nations (UN) to ensure resilient and healthy environment for present and future generations, especially the SDG 7 of UN, “Affordable and Clean Energy”, set up to achieve global development of modern renewable energy systems. Investment policies and patterns of developed and developing countries in transitioning to energy productions primarily from renewable sources and obstacles such as scale‐up challenges, innovations in new energy systems, policies, financing mechanisms, and implementation strategies are examined. Furthermore, a comprehensive overview of the present global status of hydropower, wind, and solar, the three most significant renewable electricity technologies, as well as their basic operating principles, costs, and potential is conducted. Hydroelectric, wind, and solar power had grown from 3429, 346, and 34 TWh yr−1 in 2010 to 4274, 1598, and 846 TWh yr−1 in 2020, a growth of about 1.25, 4.60, and 24.9 times in a decade, respectively. Strategies to achieve energy systems that are of or near net zero GHG emissions by 2050s through the deployment of renewable energy systems are also investigated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Geophysical Union (AGU) Shuyu Zhang; Gengxi Zhang; Guoqing Gong; Thian Yew Gan; Deliang Chen; Junguo Liu;doi: 10.1029/2023gl107622
AbstractRecent extremely heavy precipitation has led to substantial economic losses and affected millions of residences in the Lancang‐Mekong River Basin (LMRB). This study analyzed the spatial‐temporal characteristics of the annual maximum precipitation (R1X) of the LMRB and identified the moisture sources and pathways conducive to R1Xs using a Lagrangian back trajectory model. Results show that India Ocean and Bay of Bengal (IO/BOB), local evapotranspiration, and West Pacific Ocean and East China (WP/EC) are the three main moisture transport pathways of the R1Xs in LMRB, contributing 68.3%, 20.4% and 11.3% of the trajectories, respectively. R1Xs in the downstream eastern area are affected by tropical cyclones bringing large amounts of moisture from the WP/EC. As tropical cyclones shifted northward under climate change impact, more extreme precipitation occurred over the LMRB due to moisture coming from WP/EC, but those from the IO/BOB had decreased because of the slowdown of flows across the Equator.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl107622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl107622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Thian Yew Gan; Shereif H. Mahmoud;pmid: 29758885
The implications of anthropogenic climate change, human activities and land use change (LUC) on the environment and ecosystem services in the coastal regions of Saudi Arabia were analyzed. Earth observations data was used to drive land use categories between 1970 and 2014. Next, a Markov-CA model was developed to characterize the dynamic of LUC between 2014 and 2100 and their impacts on regions' climate and environment. Non-parametric change point and trend detection algorithms were applied to temperature, precipitation and greenhouse gases data to investigate the presence of anthropogenic climate change. Lastly, climate models were used to project future climate change between 2014 and 2100. The analysis of LUC revealed that between 1970 and 2014, built up areas experienced the greatest growth during the study period, leading to a significant monotonic trend. Urban areas increased by 2349.61km2 between 1970 and 2014, an average increase of >53.4km2/yr. The projected LUC between 2014 and 2100 indicate a continued increase in urban areas and irrigated cropland. Human alteration of land use from natural vegetation and forests to other uses after 1970, resulted in a loss, degradation, and fragmentation, all of which usually have devastating effects on the biodiversity of the region. Resulting in a statistically significant change point in temperature anomaly after 1968 with a warming trend of 0.24°C/decade and a downward trend in precipitation anomaly of 12.2mm/decade. Total greenhouse gas emissions including all anthropogenic sources showed a statistically significant positive trend of 78,090Kt/decade after 1991. This is reflected in the future projection of temperature anomaly between 1900 and 2100 with a future warming trend of 0.19°C/decade. In conclusion, human activities, industrial revelation, deforestation, land use transformation and increase in greenhouse gases had significant implications on the environment and ecosystem services of the study area.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.03.290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu166 citations 166 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.03.290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, United Kingdom, FrancePublisher:Wiley Funded by:NSF | Department of Energy (DoE..., NSF | DOE Support to Analyze Va..., UKRI | Securing Multidisciplinar...NSF| Department of Energy (DoE) Support of the National Center for Atmospheric Research Activities ,NSF| DOE Support to Analyze Variability, Change and Predictability in the Earth System ,UKRI| Securing Multidisciplinary UndeRstanding and Prediction of Hiatus and Surge events (SMURPHS)Mathew Barlow; Laura Wilcox; Thian Yew Gan; Abigail L. S. Swann; Olga Zolina; Olga Zolina; Annalisa Cherchi; Angeline G. Pendergrass; Richard P. Allan; Hayley J. Fowler; Michael P. Byrne; Michael P. Byrne; Daniel Rosenfeld; Daniel Rosenfeld; Hervé Douville;AbstractGlobally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2–3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in‐storm and larger‐scale feedback processes, while changes in large‐scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population.
CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2020License: CC BYFull-Text: https://hdl.handle.net/10023/19765Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 369 citations 369 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2020License: CC BYFull-Text: https://hdl.handle.net/10023/19765Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Xuezhi Tan; Thian Yew Gan;AbstractClimate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep17767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep17767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Daniel E. Horton; Xuezhi Tan; Xuezhi Tan; Thian Yew Gan;doi: 10.1111/gcb.14329
pmid: 29802780
AbstractHuman and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extremes exceed their historical windows of variability within impact‐relevant socioeconomic, geopolitical, and ecological domains, we investigate the timing of perceivable changes (time of emergence; TOE) for 18 magnitude‐, frequency‐, and severity‐based extreme temperature (10) and precipitation (8) indices using both multimodel and single‐model multirealization ensembles. Under a high‐emission scenario, we find that the signal of frequency‐ and severity‐based temperature extremes is projected to rise above historical noise earliest in midlatitudes, whereas magnitude‐based temperature extremes emerge first in low and high latitudes. Precipitation extremes demonstrate different emergence patterns, with severity‐based indices first emerging over midlatitudes, and magnitude‐ and frequency‐based indices emerging earliest in low and high latitudes. Applied to impact‐relevant domains, simulated TOE patterns suggest (a) unprecedented consecutive dry day occurrence in >50% of 14 terrestrial biomes and 12 marine realms prior to 2100, (b) earlier perceivable changes in climate extremes in countries with lower per capita GDP, and (c) emergence of severe and frequent heat extremes well‐before 2030 for the 590 most populous urban centers. Elucidating extreme‐metric and domain‐type TOE heterogeneities highlights the challenges adaptation planners face in confronting the consequences of elevated twenty‐first century radiative forcing.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Wiley Gan, Kai Ernn; Taikan, Oki; Gan, Thian Yew; Weis, Tim; Yamazaki, Dai; Schüttrumpf, Holger;Climate change impacts due to unprecedented rising concentrations of greenhouse gas (GHG) are intensifying and widespread, making extreme climate events more widespread, frequent, and severe. To mitigate the worst consequences of climate warming, herein it is investigated how the global community can collectively achieve a large‐scale, sustained reduction in GHG emissions, and how to effectively move away from a predominantly fossil fuel‐based economy to one dominated by renewable energy? This transition is necessary to achieve the sustainable development goals (SDGs) of United Nations (UN) to ensure resilient and healthy environment for present and future generations, especially the SDG 7 of UN, “Affordable and Clean Energy”, set up to achieve global development of modern renewable energy systems. Investment policies and patterns of developed and developing countries in transitioning to energy productions primarily from renewable sources and obstacles such as scale‐up challenges, innovations in new energy systems, policies, financing mechanisms, and implementation strategies are examined. Furthermore, a comprehensive overview of the present global status of hydropower, wind, and solar, the three most significant renewable electricity technologies, as well as their basic operating principles, costs, and potential is conducted. Hydroelectric, wind, and solar power had grown from 3429, 346, and 34 TWh yr−1 in 2010 to 4274, 1598, and 846 TWh yr−1 in 2020, a growth of about 1.25, 4.60, and 24.9 times in a decade, respectively. Strategies to achieve energy systems that are of or near net zero GHG emissions by 2050s through the deployment of renewable energy systems are also investigated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202300275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Geophysical Union (AGU) Shuyu Zhang; Gengxi Zhang; Guoqing Gong; Thian Yew Gan; Deliang Chen; Junguo Liu;doi: 10.1029/2023gl107622
AbstractRecent extremely heavy precipitation has led to substantial economic losses and affected millions of residences in the Lancang‐Mekong River Basin (LMRB). This study analyzed the spatial‐temporal characteristics of the annual maximum precipitation (R1X) of the LMRB and identified the moisture sources and pathways conducive to R1Xs using a Lagrangian back trajectory model. Results show that India Ocean and Bay of Bengal (IO/BOB), local evapotranspiration, and West Pacific Ocean and East China (WP/EC) are the three main moisture transport pathways of the R1Xs in LMRB, contributing 68.3%, 20.4% and 11.3% of the trajectories, respectively. R1Xs in the downstream eastern area are affected by tropical cyclones bringing large amounts of moisture from the WP/EC. As tropical cyclones shifted northward under climate change impact, more extreme precipitation occurred over the LMRB due to moisture coming from WP/EC, but those from the IO/BOB had decreased because of the slowdown of flows across the Equator.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl107622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl107622&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu