- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Elsevier BV Authors: Sunarso, J.; Liu, S.; Lin, Y. S.; Diniz da Costa, J. C.;Abstract In this work, perovskite BaBiO3−δ disk membranes were synthesized with the molar ratio (z) of BiO1.5 to BaO between 0.5 and 3 at varying sintering temperatures. Disk membranes with z > 1.33, associated with a lower amount of Bi-rich perovskite phase, showed mechanically weak properties while membranes with z ≤ 1 showed superior stability at temperatures in excess of 800 °C. The best performance was obtained for the z = 0.86 disk membrane, reaching oxygen fluxes of 1.2 ml min−1 cm−2 at 950 °C. This was attributed to the higher sintering temperature and the formation of oxygen deficient phase of BaBiO3−δ perovskite. For gas testing temperatures above 800 °C, it was found that the oxygen permeation was limited by both bulk diffusion and surface kinetics as oxygen flux did not increase proportionally to the inverse of membrane thickness reduction. Further analysis showed that the activation energy for oxygen ionic transport changed at 800 °C, however the z = 1 sample displayed the opposite trend from other compositions, indicating the formation of more oxygen vacancies in the crystal lattice. Mechanically stable disk membranes exposed to thermal cycling tests resulted in crystal structure instability of the pure perovskite (z = 1) and loss of oxygen vacancies while the z 1 sample showed superior thermal cycling and crystal structure stability.
Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2009.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2009.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Elsevier BV Authors: Sunarso, J.; Liu, S.; Lin, Y. S.; Diniz da Costa, J. C.;Abstract In this work, perovskite BaBiO3−δ disk membranes were synthesized with the molar ratio (z) of BiO1.5 to BaO between 0.5 and 3 at varying sintering temperatures. Disk membranes with z > 1.33, associated with a lower amount of Bi-rich perovskite phase, showed mechanically weak properties while membranes with z ≤ 1 showed superior stability at temperatures in excess of 800 °C. The best performance was obtained for the z = 0.86 disk membrane, reaching oxygen fluxes of 1.2 ml min−1 cm−2 at 950 °C. This was attributed to the higher sintering temperature and the formation of oxygen deficient phase of BaBiO3−δ perovskite. For gas testing temperatures above 800 °C, it was found that the oxygen permeation was limited by both bulk diffusion and surface kinetics as oxygen flux did not increase proportionally to the inverse of membrane thickness reduction. Further analysis showed that the activation energy for oxygen ionic transport changed at 800 °C, however the z = 1 sample displayed the opposite trend from other compositions, indicating the formation of more oxygen vacancies in the crystal lattice. Mechanically stable disk membranes exposed to thermal cycling tests resulted in crystal structure instability of the pure perovskite (z = 1) and loss of oxygen vacancies while the z 1 sample showed superior thermal cycling and crystal structure stability.
Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2009.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2009.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Authors: Zong Yang Kong; Ahmed Mahmoud; Shaomin Liu; Jaka Sunarso;handle: 20.500.11937/70924 , 1959.3/443773
Abstract The glycol purity limit in conventional absorption-based natural gas dehydration process has led to the significant water vapour presence in the supposedly dry product gas. Several alternative processes have been developed to overcome this limitation that includes stripping gas injection using nitrogen, a portion of dry product gas, or volatile hydrocarbon (DRIZO process), stripping gas modified with Stahl column, and Coldfinger technology. This review summarises these different processes and elaborates on their mechanisms, process flow diagram, advantages, drawbacks, and current statuses. Relevant works from 1991 to 2017 were compiled and the existing gaps were highlighted as recommendation for future work.
Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2018.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2018.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Authors: Zong Yang Kong; Ahmed Mahmoud; Shaomin Liu; Jaka Sunarso;handle: 20.500.11937/70924 , 1959.3/443773
Abstract The glycol purity limit in conventional absorption-based natural gas dehydration process has led to the significant water vapour presence in the supposedly dry product gas. Several alternative processes have been developed to overcome this limitation that includes stripping gas injection using nitrogen, a portion of dry product gas, or volatile hydrocarbon (DRIZO process), stripping gas modified with Stahl column, and Coldfinger technology. This review summarises these different processes and elaborates on their mechanisms, process flow diagram, advantages, drawbacks, and current statuses. Relevant works from 1991 to 2017 were compiled and the existing gaps were highlighted as recommendation for future work.
Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2018.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2018.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Abdulqader Bin Sahl; Ahmed Mahmoud; Zong Yang Kong; Jaka Sunarso;handle: 1959.3/469366
This work presents a two-step method to reduce the energy consumption (in terms of the reboiler duty) of a natural gas sweetening process via a physical-chemical solvent mixture (Step 1) followed by a techno-economic analysis of 15 different absorber-stripper configurations (Step 2). Initially, an amine-based sweetening process using a H2S-free sour gas was simulated on Aspen HYSYS and the simulation results were validated against real plant data. In Step 1, different ratios of Sulfinol-M and Sulfinol-D based sweetening process were simulated and the superior physical-chemical solvent mixture that provides the lowest reboiler duty while meeting the sweet gas CO2 product concentration specification (i.e., less than 2 mol.%) is the Sulfinol-M solvent that contains 38 wt.% methyl diethanolamine (MDEA), 40 wt.% Sulfolane, and 22 wt.% water. This Sulfinol-M based model is then optimized via a parametric analysis to further improve its performance in terms of the reboiler duty prior to Step 2. The optimized Sulfinol-M based model achieved 65% saving in the reboiler duty while fulfilling the CO2 concentration specification in product gas relative to the base case. In Step 2, four main absorber-stripper configurations, namely absorber intercooling (AI), lean amine stream split flow (LASSF), rich amine stream split flow (RASSF), and mechanical vapor recompression (MVR) along with their 11 possible combinations were simulated in an attempt to decrease the energy consumption of the process and hence, ranked based on their total cost of production (TCOP). The results revealed that the integration of LASSF + RASSF provides the best option as it achieved the lowest TCOP of $4.60 M while fulfilling the CO2 concentration in product gas and contributed to 6.39% savings in the reboiler duty compared to the optimized conventional Sulfinol-M based model.
South African Journa... arrow_drop_down South African Journal of Chemical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sajce.2022.10.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert South African Journa... arrow_drop_down South African Journal of Chemical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sajce.2022.10.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Abdulqader Bin Sahl; Ahmed Mahmoud; Zong Yang Kong; Jaka Sunarso;handle: 1959.3/469366
This work presents a two-step method to reduce the energy consumption (in terms of the reboiler duty) of a natural gas sweetening process via a physical-chemical solvent mixture (Step 1) followed by a techno-economic analysis of 15 different absorber-stripper configurations (Step 2). Initially, an amine-based sweetening process using a H2S-free sour gas was simulated on Aspen HYSYS and the simulation results were validated against real plant data. In Step 1, different ratios of Sulfinol-M and Sulfinol-D based sweetening process were simulated and the superior physical-chemical solvent mixture that provides the lowest reboiler duty while meeting the sweet gas CO2 product concentration specification (i.e., less than 2 mol.%) is the Sulfinol-M solvent that contains 38 wt.% methyl diethanolamine (MDEA), 40 wt.% Sulfolane, and 22 wt.% water. This Sulfinol-M based model is then optimized via a parametric analysis to further improve its performance in terms of the reboiler duty prior to Step 2. The optimized Sulfinol-M based model achieved 65% saving in the reboiler duty while fulfilling the CO2 concentration specification in product gas relative to the base case. In Step 2, four main absorber-stripper configurations, namely absorber intercooling (AI), lean amine stream split flow (LASSF), rich amine stream split flow (RASSF), and mechanical vapor recompression (MVR) along with their 11 possible combinations were simulated in an attempt to decrease the energy consumption of the process and hence, ranked based on their total cost of production (TCOP). The results revealed that the integration of LASSF + RASSF provides the best option as it achieved the lowest TCOP of $4.60 M while fulfilling the CO2 concentration in product gas and contributed to 6.39% savings in the reboiler duty compared to the optimized conventional Sulfinol-M based model.
South African Journa... arrow_drop_down South African Journal of Chemical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sajce.2022.10.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert South African Journa... arrow_drop_down South African Journal of Chemical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sajce.2022.10.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Australia, Australia, NetherlandsPublisher:Elsevier BV Shirleen Lee Yuen Lo; Bing Shen How; Sin Yong Teng; Juin Yau Lim; Adrian Chun Minh Loy; Hon Loong Lam; Jaka Sunarso;Contains fulltext : 295449.pdf (Publisher’s version ) (Open Access)
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Australia, Australia, NetherlandsPublisher:Elsevier BV Shirleen Lee Yuen Lo; Bing Shen How; Sin Yong Teng; Juin Yau Lim; Adrian Chun Minh Loy; Hon Loong Lam; Jaka Sunarso;Contains fulltext : 295449.pdf (Publisher’s version ) (Open Access)
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Frederick Jit Fook Phang; Yu Si Wang; Jiuan Jing Chew; Yee Ho Chai; Megan Soh; Deni Shidqi Khaerudini; Soh Kheang Loh; Suzana Yusup; Jaka Sunarso;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2025.107682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2025.107682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Frederick Jit Fook Phang; Yu Si Wang; Jiuan Jing Chew; Yee Ho Chai; Megan Soh; Deni Shidqi Khaerudini; Soh Kheang Loh; Suzana Yusup; Jaka Sunarso;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2025.107682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2025.107682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Authors: Claudia Li; Vincentius Surya Kurnia Adi; Jaka Sunarso;handle: 1959.3/466506
The unequal distribution of freshwater resources on Earth has spurred ongoing research to explore alternative sustainable desalination technologies to meet the demand for fresh water. This work features the development of a hierarchical control system incorporating a model predictive controller (MPC) and proportional-integral-derivative (PID) controllers for a fuel cell-integrated solar heated membrane desalination system, which was simulated using Simulink in MATLAB. The process disturbances were identified to be the solar irradiance and ambient temperature, while the manipulated variables were determined to be the seawater flow rate and H2 molar flow rate based on a sensitivity analysis. The hierarchical control system consisted of two levels, i.e., level 1 (base level) with the PID controllers and plant model, and level 2 with the MPC and feedback from the plant output. The system was revealed to be highly dependent on the MPC setpoint, with the optimal setpoint to maintain consistent total produced distillate (TPD) and profit to be around 5 kg h−1 and 6.5 × 10−5 USD s−1, respectively. The insights on the controller design and approach presented in this work are expected to benefit future membrane desalination system development.
Chemical Engineering... arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2022.108868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2022.108868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Authors: Claudia Li; Vincentius Surya Kurnia Adi; Jaka Sunarso;handle: 1959.3/466506
The unequal distribution of freshwater resources on Earth has spurred ongoing research to explore alternative sustainable desalination technologies to meet the demand for fresh water. This work features the development of a hierarchical control system incorporating a model predictive controller (MPC) and proportional-integral-derivative (PID) controllers for a fuel cell-integrated solar heated membrane desalination system, which was simulated using Simulink in MATLAB. The process disturbances were identified to be the solar irradiance and ambient temperature, while the manipulated variables were determined to be the seawater flow rate and H2 molar flow rate based on a sensitivity analysis. The hierarchical control system consisted of two levels, i.e., level 1 (base level) with the PID controllers and plant model, and level 2 with the MPC and feedback from the plant output. The system was revealed to be highly dependent on the MPC setpoint, with the optimal setpoint to maintain consistent total produced distillate (TPD) and profit to be around 5 kg h−1 and 6.5 × 10−5 USD s−1, respectively. The insights on the controller design and approach presented in this work are expected to benefit future membrane desalination system development.
Chemical Engineering... arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2022.108868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2022.108868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Royal Society of Chemistry (RSC) Authors: Sunarso, J.; Liu, Shaomin; Lin, Y.; da Costa, J.;doi: 10.1039/c1ee01180d
handle: 1959.3/446964 , 20.500.11937/33512
Here we report the production of novel high performance BaBi0.05Sc0.1Co0.85O3−δ (BaBiScCo) hollow fibres delivering oxygen fluxes of 11.4 ml cm−2 min−1 at 950 °C. The doping of bismuth, a highly ionic conductor, at the B-site of a barium based perovskite overcame oxygen ionic transport limitations even at temperatures as low as 600 °C.
Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01180d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01180d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Royal Society of Chemistry (RSC) Authors: Sunarso, J.; Liu, Shaomin; Lin, Y.; da Costa, J.;doi: 10.1039/c1ee01180d
handle: 1959.3/446964 , 20.500.11937/33512
Here we report the production of novel high performance BaBi0.05Sc0.1Co0.85O3−δ (BaBiScCo) hollow fibres delivering oxygen fluxes of 11.4 ml cm−2 min−1 at 950 °C. The doping of bismuth, a highly ionic conductor, at the B-site of a barium based perovskite overcame oxygen ionic transport limitations even at temperatures as low as 600 °C.
Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01180d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01180d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Australia, Malaysia, MalaysiaPublisher:Elsevier BV Megan Soh; Deni Shidqi Khaerudini; Chung Loong Yiin; Jiuan Jing Chew; Jaka Sunarso;handle: 1959.3/466618
This study evaluates the effect of wet torrefaction of OPT under autogenous pressures at 3 different relatively low temperatures (i.e. 180, 200, and 220 oC) and extended residence times (i.e. 3, 6, 9, 12, 18, 24, 48, and 72 h) on the hydrochar's physical, chemical, and structural properties. Logarithmic-like increase of HHV profile was observed at the highest temperature of 220 oC, in which a plateau was reached at 24 h. Between temperature and residence time, temperature gave a more significant influence on the characteristics of the produced biochar. The HHV of the biomass sample increases from 16.4 MJ kg−1 in raw OPT to the highest HHV of 26.9 MJ kg−1 when torrefied at 220 oC for 72 h. Van Krevelen analysis shows dehydration was the primary reaction pathway that occurred during wet torrefaction of OPT at 180 oC for 24 h, 200 oC for 24 h, 220 oC for 6 h, and 220 oC for 12 h. Decarboxylation dominates the reaction when temperature and residence time was increased to 220 oC for 24 h, respectively. Further increasing the residence time to 48 and 72 h at 220 oC promotes demethylation as the dominant reaction. FTIR analysis reveals that most hemicellulose and parts of cellulose decomposed when OPT was subjected to lower temperature and/or residence time (i.e. 180 oC for 24 h, 200 oC for 24 h, 220 oC for 6 h, and 220 oC for 12 h). However, increasing temperature to 220 oC and beyond 24 h resulted in carbon-rich and lignin-dense hydrochar, which was observed in powder XRD results where graphite nitrate peak at 2θ of 7.4o appears. Morphology analysis reveals that most of the hemicellulose and cellulose-rich parenchyma was removed when subjected to wet torrefaction at 220 oC for 24 h. The formation of microspheres from the repolymerisation of 5-HMF was observed in large quantities in OPT hydrochar treated at 220 oC for 72 h. Inorganic elemental analysis shows that wet torrefaction of OPT effectively removes K and Cl from the biomass. The removal of K increased with increased temperature, which may partially resolve the corrosion problems in combustion reactions related to silicate deposition. OPT hydrochar from WT under autogenous condition and relatively low temperature exhibits much more improved fuel properties compared to raw OPT.
Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Australia, Malaysia, MalaysiaPublisher:Elsevier BV Megan Soh; Deni Shidqi Khaerudini; Chung Loong Yiin; Jiuan Jing Chew; Jaka Sunarso;handle: 1959.3/466618
This study evaluates the effect of wet torrefaction of OPT under autogenous pressures at 3 different relatively low temperatures (i.e. 180, 200, and 220 oC) and extended residence times (i.e. 3, 6, 9, 12, 18, 24, 48, and 72 h) on the hydrochar's physical, chemical, and structural properties. Logarithmic-like increase of HHV profile was observed at the highest temperature of 220 oC, in which a plateau was reached at 24 h. Between temperature and residence time, temperature gave a more significant influence on the characteristics of the produced biochar. The HHV of the biomass sample increases from 16.4 MJ kg−1 in raw OPT to the highest HHV of 26.9 MJ kg−1 when torrefied at 220 oC for 72 h. Van Krevelen analysis shows dehydration was the primary reaction pathway that occurred during wet torrefaction of OPT at 180 oC for 24 h, 200 oC for 24 h, 220 oC for 6 h, and 220 oC for 12 h. Decarboxylation dominates the reaction when temperature and residence time was increased to 220 oC for 24 h, respectively. Further increasing the residence time to 48 and 72 h at 220 oC promotes demethylation as the dominant reaction. FTIR analysis reveals that most hemicellulose and parts of cellulose decomposed when OPT was subjected to lower temperature and/or residence time (i.e. 180 oC for 24 h, 200 oC for 24 h, 220 oC for 6 h, and 220 oC for 12 h). However, increasing temperature to 220 oC and beyond 24 h resulted in carbon-rich and lignin-dense hydrochar, which was observed in powder XRD results where graphite nitrate peak at 2θ of 7.4o appears. Morphology analysis reveals that most of the hemicellulose and cellulose-rich parenchyma was removed when subjected to wet torrefaction at 220 oC for 24 h. The formation of microspheres from the repolymerisation of 5-HMF was observed in large quantities in OPT hydrochar treated at 220 oC for 72 h. Inorganic elemental analysis shows that wet torrefaction of OPT effectively removes K and Cl from the biomass. The removal of K increased with increased temperature, which may partially resolve the corrosion problems in combustion reactions related to silicate deposition. OPT hydrochar from WT under autogenous condition and relatively low temperature exhibits much more improved fuel properties compared to raw OPT.
Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Australia, Australia, NetherlandsPublisher:Elsevier BV Bing Shen How; Sin Yong Teng; Ákos Orosz; Jaka Sunarso; Ferenc Friedler;Contains fulltext : 293385.pdf (Publisher’s version ) (Open Access)
Radboud Repository arrow_drop_down Education for Chemical EngineersArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ece.2022.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Radboud Repository arrow_drop_down Education for Chemical EngineersArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ece.2022.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Australia, Australia, NetherlandsPublisher:Elsevier BV Bing Shen How; Sin Yong Teng; Ákos Orosz; Jaka Sunarso; Ferenc Friedler;Contains fulltext : 293385.pdf (Publisher’s version ) (Open Access)
Radboud Repository arrow_drop_down Education for Chemical EngineersArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ece.2022.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Radboud Repository arrow_drop_down Education for Chemical EngineersArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ece.2022.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Bo Meng; Huina Wang; Hongda Cheng; Xiaobin Wang; Xiuxia Meng; Jaka Sunarso; Xiaoyao Tan; Shaomin Liu;handle: 1959.3/447047
Abstract This work characterizes the hydrogen permeation fluxes of dual-phase SrCe0.9Y0.1O3-Ce0.8Sm0.2O2 (SCY-SDC) laminated membrane that contains regular and independent transport channels made of alternating films of SCY and SDC phases. Such membrane was synthesized via combined tape casting, co-pressing, and sintering route. The hydrogen flux of the dual-phase SCY-SDC laminated membrane reached 0.163 mL min−1 cm−2 at 900 °C when 100 mL min−1 of 20 vol% H2 in He and 100 mL min−1 of N2 were passed in the feed side and the permeate side, respectively. Such flux is significantly larger than the flux of the conventional SCY-SDC dual-phase membrane made by mixing SCY-SDC powder mixture and subsequent sintering at the same operation condition. The enhanced flux for the dual-phase laminated membrane relative to the conventional dual-phase membrane is attributed to the shorter diffusion paths for protons and electrons and the lower amount of the phase interfaces. The dual-phase SCY-SDC laminated membrane also displayed stable hydrogen permeation flux of around 0.15 mL min−1 cm−2 during 166-hour continuous operation at 850 °C in the presence of carbon dioxide in the permeate gas stream. Such stable performance highlights its chemical stability. Another attractive advantage of the dual-phase SCY-SDC laminated membrane lies in the minor discrepancy of the thermal expansion coefficient of SCY (α = 1.12·10−5 K−1) to that of SDC (α = 1.28·10−5 K−1) as obtained by dilatometry from room temperature to 1500 °C, which ensures its mechanical integrity during repeated thermal cycles.
Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2018.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2018.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Bo Meng; Huina Wang; Hongda Cheng; Xiaobin Wang; Xiuxia Meng; Jaka Sunarso; Xiaoyao Tan; Shaomin Liu;handle: 1959.3/447047
Abstract This work characterizes the hydrogen permeation fluxes of dual-phase SrCe0.9Y0.1O3-Ce0.8Sm0.2O2 (SCY-SDC) laminated membrane that contains regular and independent transport channels made of alternating films of SCY and SDC phases. Such membrane was synthesized via combined tape casting, co-pressing, and sintering route. The hydrogen flux of the dual-phase SCY-SDC laminated membrane reached 0.163 mL min−1 cm−2 at 900 °C when 100 mL min−1 of 20 vol% H2 in He and 100 mL min−1 of N2 were passed in the feed side and the permeate side, respectively. Such flux is significantly larger than the flux of the conventional SCY-SDC dual-phase membrane made by mixing SCY-SDC powder mixture and subsequent sintering at the same operation condition. The enhanced flux for the dual-phase laminated membrane relative to the conventional dual-phase membrane is attributed to the shorter diffusion paths for protons and electrons and the lower amount of the phase interfaces. The dual-phase SCY-SDC laminated membrane also displayed stable hydrogen permeation flux of around 0.15 mL min−1 cm−2 during 166-hour continuous operation at 850 °C in the presence of carbon dioxide in the permeate gas stream. Such stable performance highlights its chemical stability. Another attractive advantage of the dual-phase SCY-SDC laminated membrane lies in the minor discrepancy of the thermal expansion coefficient of SCY (α = 1.12·10−5 K−1) to that of SDC (α = 1.28·10−5 K−1) as obtained by dilatometry from room temperature to 1500 °C, which ensures its mechanical integrity during repeated thermal cycles.
Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2018.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2018.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Elsevier BV Authors: Sunarso, J.; Liu, S.; Lin, Y. S.; Diniz da Costa, J. C.;Abstract In this work, perovskite BaBiO3−δ disk membranes were synthesized with the molar ratio (z) of BiO1.5 to BaO between 0.5 and 3 at varying sintering temperatures. Disk membranes with z > 1.33, associated with a lower amount of Bi-rich perovskite phase, showed mechanically weak properties while membranes with z ≤ 1 showed superior stability at temperatures in excess of 800 °C. The best performance was obtained for the z = 0.86 disk membrane, reaching oxygen fluxes of 1.2 ml min−1 cm−2 at 950 °C. This was attributed to the higher sintering temperature and the formation of oxygen deficient phase of BaBiO3−δ perovskite. For gas testing temperatures above 800 °C, it was found that the oxygen permeation was limited by both bulk diffusion and surface kinetics as oxygen flux did not increase proportionally to the inverse of membrane thickness reduction. Further analysis showed that the activation energy for oxygen ionic transport changed at 800 °C, however the z = 1 sample displayed the opposite trend from other compositions, indicating the formation of more oxygen vacancies in the crystal lattice. Mechanically stable disk membranes exposed to thermal cycling tests resulted in crystal structure instability of the pure perovskite (z = 1) and loss of oxygen vacancies while the z 1 sample showed superior thermal cycling and crystal structure stability.
Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2009.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2009.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Elsevier BV Authors: Sunarso, J.; Liu, S.; Lin, Y. S.; Diniz da Costa, J. C.;Abstract In this work, perovskite BaBiO3−δ disk membranes were synthesized with the molar ratio (z) of BiO1.5 to BaO between 0.5 and 3 at varying sintering temperatures. Disk membranes with z > 1.33, associated with a lower amount of Bi-rich perovskite phase, showed mechanically weak properties while membranes with z ≤ 1 showed superior stability at temperatures in excess of 800 °C. The best performance was obtained for the z = 0.86 disk membrane, reaching oxygen fluxes of 1.2 ml min−1 cm−2 at 950 °C. This was attributed to the higher sintering temperature and the formation of oxygen deficient phase of BaBiO3−δ perovskite. For gas testing temperatures above 800 °C, it was found that the oxygen permeation was limited by both bulk diffusion and surface kinetics as oxygen flux did not increase proportionally to the inverse of membrane thickness reduction. Further analysis showed that the activation energy for oxygen ionic transport changed at 800 °C, however the z = 1 sample displayed the opposite trend from other compositions, indicating the formation of more oxygen vacancies in the crystal lattice. Mechanically stable disk membranes exposed to thermal cycling tests resulted in crystal structure instability of the pure perovskite (z = 1) and loss of oxygen vacancies while the z 1 sample showed superior thermal cycling and crystal structure stability.
Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2009.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Membrane ... arrow_drop_down Journal of Membrane ScienceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.memsci.2009.08.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Authors: Zong Yang Kong; Ahmed Mahmoud; Shaomin Liu; Jaka Sunarso;handle: 20.500.11937/70924 , 1959.3/443773
Abstract The glycol purity limit in conventional absorption-based natural gas dehydration process has led to the significant water vapour presence in the supposedly dry product gas. Several alternative processes have been developed to overcome this limitation that includes stripping gas injection using nitrogen, a portion of dry product gas, or volatile hydrocarbon (DRIZO process), stripping gas modified with Stahl column, and Coldfinger technology. This review summarises these different processes and elaborates on their mechanisms, process flow diagram, advantages, drawbacks, and current statuses. Relevant works from 1991 to 2017 were compiled and the existing gaps were highlighted as recommendation for future work.
Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2018.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2018.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Authors: Zong Yang Kong; Ahmed Mahmoud; Shaomin Liu; Jaka Sunarso;handle: 20.500.11937/70924 , 1959.3/443773
Abstract The glycol purity limit in conventional absorption-based natural gas dehydration process has led to the significant water vapour presence in the supposedly dry product gas. Several alternative processes have been developed to overcome this limitation that includes stripping gas injection using nitrogen, a portion of dry product gas, or volatile hydrocarbon (DRIZO process), stripping gas modified with Stahl column, and Coldfinger technology. This review summarises these different processes and elaborates on their mechanisms, process flow diagram, advantages, drawbacks, and current statuses. Relevant works from 1991 to 2017 were compiled and the existing gaps were highlighted as recommendation for future work.
Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2018.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Natural G... arrow_drop_down Journal of Natural Gas Science and EngineeringArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jngse.2018.06.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Abdulqader Bin Sahl; Ahmed Mahmoud; Zong Yang Kong; Jaka Sunarso;handle: 1959.3/469366
This work presents a two-step method to reduce the energy consumption (in terms of the reboiler duty) of a natural gas sweetening process via a physical-chemical solvent mixture (Step 1) followed by a techno-economic analysis of 15 different absorber-stripper configurations (Step 2). Initially, an amine-based sweetening process using a H2S-free sour gas was simulated on Aspen HYSYS and the simulation results were validated against real plant data. In Step 1, different ratios of Sulfinol-M and Sulfinol-D based sweetening process were simulated and the superior physical-chemical solvent mixture that provides the lowest reboiler duty while meeting the sweet gas CO2 product concentration specification (i.e., less than 2 mol.%) is the Sulfinol-M solvent that contains 38 wt.% methyl diethanolamine (MDEA), 40 wt.% Sulfolane, and 22 wt.% water. This Sulfinol-M based model is then optimized via a parametric analysis to further improve its performance in terms of the reboiler duty prior to Step 2. The optimized Sulfinol-M based model achieved 65% saving in the reboiler duty while fulfilling the CO2 concentration specification in product gas relative to the base case. In Step 2, four main absorber-stripper configurations, namely absorber intercooling (AI), lean amine stream split flow (LASSF), rich amine stream split flow (RASSF), and mechanical vapor recompression (MVR) along with their 11 possible combinations were simulated in an attempt to decrease the energy consumption of the process and hence, ranked based on their total cost of production (TCOP). The results revealed that the integration of LASSF + RASSF provides the best option as it achieved the lowest TCOP of $4.60 M while fulfilling the CO2 concentration in product gas and contributed to 6.39% savings in the reboiler duty compared to the optimized conventional Sulfinol-M based model.
South African Journa... arrow_drop_down South African Journal of Chemical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sajce.2022.10.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert South African Journa... arrow_drop_down South African Journal of Chemical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sajce.2022.10.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Abdulqader Bin Sahl; Ahmed Mahmoud; Zong Yang Kong; Jaka Sunarso;handle: 1959.3/469366
This work presents a two-step method to reduce the energy consumption (in terms of the reboiler duty) of a natural gas sweetening process via a physical-chemical solvent mixture (Step 1) followed by a techno-economic analysis of 15 different absorber-stripper configurations (Step 2). Initially, an amine-based sweetening process using a H2S-free sour gas was simulated on Aspen HYSYS and the simulation results were validated against real plant data. In Step 1, different ratios of Sulfinol-M and Sulfinol-D based sweetening process were simulated and the superior physical-chemical solvent mixture that provides the lowest reboiler duty while meeting the sweet gas CO2 product concentration specification (i.e., less than 2 mol.%) is the Sulfinol-M solvent that contains 38 wt.% methyl diethanolamine (MDEA), 40 wt.% Sulfolane, and 22 wt.% water. This Sulfinol-M based model is then optimized via a parametric analysis to further improve its performance in terms of the reboiler duty prior to Step 2. The optimized Sulfinol-M based model achieved 65% saving in the reboiler duty while fulfilling the CO2 concentration specification in product gas relative to the base case. In Step 2, four main absorber-stripper configurations, namely absorber intercooling (AI), lean amine stream split flow (LASSF), rich amine stream split flow (RASSF), and mechanical vapor recompression (MVR) along with their 11 possible combinations were simulated in an attempt to decrease the energy consumption of the process and hence, ranked based on their total cost of production (TCOP). The results revealed that the integration of LASSF + RASSF provides the best option as it achieved the lowest TCOP of $4.60 M while fulfilling the CO2 concentration in product gas and contributed to 6.39% savings in the reboiler duty compared to the optimized conventional Sulfinol-M based model.
South African Journa... arrow_drop_down South African Journal of Chemical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sajce.2022.10.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert South African Journa... arrow_drop_down South African Journal of Chemical EngineeringArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sajce.2022.10.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Australia, Australia, NetherlandsPublisher:Elsevier BV Shirleen Lee Yuen Lo; Bing Shen How; Sin Yong Teng; Juin Yau Lim; Adrian Chun Minh Loy; Hon Loong Lam; Jaka Sunarso;Contains fulltext : 295449.pdf (Publisher’s version ) (Open Access)
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Australia, Australia, NetherlandsPublisher:Elsevier BV Shirleen Lee Yuen Lo; Bing Shen How; Sin Yong Teng; Juin Yau Lim; Adrian Chun Minh Loy; Hon Loong Lam; Jaka Sunarso;Contains fulltext : 295449.pdf (Publisher’s version ) (Open Access)
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.137939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Frederick Jit Fook Phang; Yu Si Wang; Jiuan Jing Chew; Yee Ho Chai; Megan Soh; Deni Shidqi Khaerudini; Soh Kheang Loh; Suzana Yusup; Jaka Sunarso;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2025.107682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2025.107682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Frederick Jit Fook Phang; Yu Si Wang; Jiuan Jing Chew; Yee Ho Chai; Megan Soh; Deni Shidqi Khaerudini; Soh Kheang Loh; Suzana Yusup; Jaka Sunarso;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2025.107682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2025.107682&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Authors: Claudia Li; Vincentius Surya Kurnia Adi; Jaka Sunarso;handle: 1959.3/466506
The unequal distribution of freshwater resources on Earth has spurred ongoing research to explore alternative sustainable desalination technologies to meet the demand for fresh water. This work features the development of a hierarchical control system incorporating a model predictive controller (MPC) and proportional-integral-derivative (PID) controllers for a fuel cell-integrated solar heated membrane desalination system, which was simulated using Simulink in MATLAB. The process disturbances were identified to be the solar irradiance and ambient temperature, while the manipulated variables were determined to be the seawater flow rate and H2 molar flow rate based on a sensitivity analysis. The hierarchical control system consisted of two levels, i.e., level 1 (base level) with the PID controllers and plant model, and level 2 with the MPC and feedback from the plant output. The system was revealed to be highly dependent on the MPC setpoint, with the optimal setpoint to maintain consistent total produced distillate (TPD) and profit to be around 5 kg h−1 and 6.5 × 10−5 USD s−1, respectively. The insights on the controller design and approach presented in this work are expected to benefit future membrane desalination system development.
Chemical Engineering... arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2022.108868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2022.108868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Authors: Claudia Li; Vincentius Surya Kurnia Adi; Jaka Sunarso;handle: 1959.3/466506
The unequal distribution of freshwater resources on Earth has spurred ongoing research to explore alternative sustainable desalination technologies to meet the demand for fresh water. This work features the development of a hierarchical control system incorporating a model predictive controller (MPC) and proportional-integral-derivative (PID) controllers for a fuel cell-integrated solar heated membrane desalination system, which was simulated using Simulink in MATLAB. The process disturbances were identified to be the solar irradiance and ambient temperature, while the manipulated variables were determined to be the seawater flow rate and H2 molar flow rate based on a sensitivity analysis. The hierarchical control system consisted of two levels, i.e., level 1 (base level) with the PID controllers and plant model, and level 2 with the MPC and feedback from the plant output. The system was revealed to be highly dependent on the MPC setpoint, with the optimal setpoint to maintain consistent total produced distillate (TPD) and profit to be around 5 kg h−1 and 6.5 × 10−5 USD s−1, respectively. The insights on the controller design and approach presented in this work are expected to benefit future membrane desalination system development.
Chemical Engineering... arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2022.108868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2022.108868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Royal Society of Chemistry (RSC) Authors: Sunarso, J.; Liu, Shaomin; Lin, Y.; da Costa, J.;doi: 10.1039/c1ee01180d
handle: 1959.3/446964 , 20.500.11937/33512
Here we report the production of novel high performance BaBi0.05Sc0.1Co0.85O3−δ (BaBiScCo) hollow fibres delivering oxygen fluxes of 11.4 ml cm−2 min−1 at 950 °C. The doping of bismuth, a highly ionic conductor, at the B-site of a barium based perovskite overcame oxygen ionic transport limitations even at temperatures as low as 600 °C.
Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01180d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01180d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Royal Society of Chemistry (RSC) Authors: Sunarso, J.; Liu, Shaomin; Lin, Y.; da Costa, J.;doi: 10.1039/c1ee01180d
handle: 1959.3/446964 , 20.500.11937/33512
Here we report the production of novel high performance BaBi0.05Sc0.1Co0.85O3−δ (BaBiScCo) hollow fibres delivering oxygen fluxes of 11.4 ml cm−2 min−1 at 950 °C. The doping of bismuth, a highly ionic conductor, at the B-site of a barium based perovskite overcame oxygen ionic transport limitations even at temperatures as low as 600 °C.
Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01180d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee01180d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Australia, Malaysia, MalaysiaPublisher:Elsevier BV Megan Soh; Deni Shidqi Khaerudini; Chung Loong Yiin; Jiuan Jing Chew; Jaka Sunarso;handle: 1959.3/466618
This study evaluates the effect of wet torrefaction of OPT under autogenous pressures at 3 different relatively low temperatures (i.e. 180, 200, and 220 oC) and extended residence times (i.e. 3, 6, 9, 12, 18, 24, 48, and 72 h) on the hydrochar's physical, chemical, and structural properties. Logarithmic-like increase of HHV profile was observed at the highest temperature of 220 oC, in which a plateau was reached at 24 h. Between temperature and residence time, temperature gave a more significant influence on the characteristics of the produced biochar. The HHV of the biomass sample increases from 16.4 MJ kg−1 in raw OPT to the highest HHV of 26.9 MJ kg−1 when torrefied at 220 oC for 72 h. Van Krevelen analysis shows dehydration was the primary reaction pathway that occurred during wet torrefaction of OPT at 180 oC for 24 h, 200 oC for 24 h, 220 oC for 6 h, and 220 oC for 12 h. Decarboxylation dominates the reaction when temperature and residence time was increased to 220 oC for 24 h, respectively. Further increasing the residence time to 48 and 72 h at 220 oC promotes demethylation as the dominant reaction. FTIR analysis reveals that most hemicellulose and parts of cellulose decomposed when OPT was subjected to lower temperature and/or residence time (i.e. 180 oC for 24 h, 200 oC for 24 h, 220 oC for 6 h, and 220 oC for 12 h). However, increasing temperature to 220 oC and beyond 24 h resulted in carbon-rich and lignin-dense hydrochar, which was observed in powder XRD results where graphite nitrate peak at 2θ of 7.4o appears. Morphology analysis reveals that most of the hemicellulose and cellulose-rich parenchyma was removed when subjected to wet torrefaction at 220 oC for 24 h. The formation of microspheres from the repolymerisation of 5-HMF was observed in large quantities in OPT hydrochar treated at 220 oC for 72 h. Inorganic elemental analysis shows that wet torrefaction of OPT effectively removes K and Cl from the biomass. The removal of K increased with increased temperature, which may partially resolve the corrosion problems in combustion reactions related to silicate deposition. OPT hydrochar from WT under autogenous condition and relatively low temperature exhibits much more improved fuel properties compared to raw OPT.
Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Australia, Malaysia, MalaysiaPublisher:Elsevier BV Megan Soh; Deni Shidqi Khaerudini; Chung Loong Yiin; Jiuan Jing Chew; Jaka Sunarso;handle: 1959.3/466618
This study evaluates the effect of wet torrefaction of OPT under autogenous pressures at 3 different relatively low temperatures (i.e. 180, 200, and 220 oC) and extended residence times (i.e. 3, 6, 9, 12, 18, 24, 48, and 72 h) on the hydrochar's physical, chemical, and structural properties. Logarithmic-like increase of HHV profile was observed at the highest temperature of 220 oC, in which a plateau was reached at 24 h. Between temperature and residence time, temperature gave a more significant influence on the characteristics of the produced biochar. The HHV of the biomass sample increases from 16.4 MJ kg−1 in raw OPT to the highest HHV of 26.9 MJ kg−1 when torrefied at 220 oC for 72 h. Van Krevelen analysis shows dehydration was the primary reaction pathway that occurred during wet torrefaction of OPT at 180 oC for 24 h, 200 oC for 24 h, 220 oC for 6 h, and 220 oC for 12 h. Decarboxylation dominates the reaction when temperature and residence time was increased to 220 oC for 24 h, respectively. Further increasing the residence time to 48 and 72 h at 220 oC promotes demethylation as the dominant reaction. FTIR analysis reveals that most hemicellulose and parts of cellulose decomposed when OPT was subjected to lower temperature and/or residence time (i.e. 180 oC for 24 h, 200 oC for 24 h, 220 oC for 6 h, and 220 oC for 12 h). However, increasing temperature to 220 oC and beyond 24 h resulted in carbon-rich and lignin-dense hydrochar, which was observed in powder XRD results where graphite nitrate peak at 2θ of 7.4o appears. Morphology analysis reveals that most of the hemicellulose and cellulose-rich parenchyma was removed when subjected to wet torrefaction at 220 oC for 24 h. The formation of microspheres from the repolymerisation of 5-HMF was observed in large quantities in OPT hydrochar treated at 220 oC for 72 h. Inorganic elemental analysis shows that wet torrefaction of OPT effectively removes K and Cl from the biomass. The removal of K increased with increased temperature, which may partially resolve the corrosion problems in combustion reactions related to silicate deposition. OPT hydrochar from WT under autogenous condition and relatively low temperature exhibits much more improved fuel properties compared to raw OPT.
Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Australia, Australia, NetherlandsPublisher:Elsevier BV Bing Shen How; Sin Yong Teng; Ákos Orosz; Jaka Sunarso; Ferenc Friedler;Contains fulltext : 293385.pdf (Publisher’s version ) (Open Access)
Radboud Repository arrow_drop_down Education for Chemical EngineersArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ece.2022.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Radboud Repository arrow_drop_down Education for Chemical EngineersArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ece.2022.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Australia, Australia, NetherlandsPublisher:Elsevier BV Bing Shen How; Sin Yong Teng; Ákos Orosz; Jaka Sunarso; Ferenc Friedler;Contains fulltext : 293385.pdf (Publisher’s version ) (Open Access)
Radboud Repository arrow_drop_down Education for Chemical EngineersArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ece.2022.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Radboud Repository arrow_drop_down Education for Chemical EngineersArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ece.2022.12.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Bo Meng; Huina Wang; Hongda Cheng; Xiaobin Wang; Xiuxia Meng; Jaka Sunarso; Xiaoyao Tan; Shaomin Liu;handle: 1959.3/447047
Abstract This work characterizes the hydrogen permeation fluxes of dual-phase SrCe0.9Y0.1O3-Ce0.8Sm0.2O2 (SCY-SDC) laminated membrane that contains regular and independent transport channels made of alternating films of SCY and SDC phases. Such membrane was synthesized via combined tape casting, co-pressing, and sintering route. The hydrogen flux of the dual-phase SCY-SDC laminated membrane reached 0.163 mL min−1 cm−2 at 900 °C when 100 mL min−1 of 20 vol% H2 in He and 100 mL min−1 of N2 were passed in the feed side and the permeate side, respectively. Such flux is significantly larger than the flux of the conventional SCY-SDC dual-phase membrane made by mixing SCY-SDC powder mixture and subsequent sintering at the same operation condition. The enhanced flux for the dual-phase laminated membrane relative to the conventional dual-phase membrane is attributed to the shorter diffusion paths for protons and electrons and the lower amount of the phase interfaces. The dual-phase SCY-SDC laminated membrane also displayed stable hydrogen permeation flux of around 0.15 mL min−1 cm−2 during 166-hour continuous operation at 850 °C in the presence of carbon dioxide in the permeate gas stream. Such stable performance highlights its chemical stability. Another attractive advantage of the dual-phase SCY-SDC laminated membrane lies in the minor discrepancy of the thermal expansion coefficient of SCY (α = 1.12·10−5 K−1) to that of SDC (α = 1.28·10−5 K−1) as obtained by dilatometry from room temperature to 1500 °C, which ensures its mechanical integrity during repeated thermal cycles.
Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2018.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2018.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Bo Meng; Huina Wang; Hongda Cheng; Xiaobin Wang; Xiuxia Meng; Jaka Sunarso; Xiaoyao Tan; Shaomin Liu;handle: 1959.3/447047
Abstract This work characterizes the hydrogen permeation fluxes of dual-phase SrCe0.9Y0.1O3-Ce0.8Sm0.2O2 (SCY-SDC) laminated membrane that contains regular and independent transport channels made of alternating films of SCY and SDC phases. Such membrane was synthesized via combined tape casting, co-pressing, and sintering route. The hydrogen flux of the dual-phase SCY-SDC laminated membrane reached 0.163 mL min−1 cm−2 at 900 °C when 100 mL min−1 of 20 vol% H2 in He and 100 mL min−1 of N2 were passed in the feed side and the permeate side, respectively. Such flux is significantly larger than the flux of the conventional SCY-SDC dual-phase membrane made by mixing SCY-SDC powder mixture and subsequent sintering at the same operation condition. The enhanced flux for the dual-phase laminated membrane relative to the conventional dual-phase membrane is attributed to the shorter diffusion paths for protons and electrons and the lower amount of the phase interfaces. The dual-phase SCY-SDC laminated membrane also displayed stable hydrogen permeation flux of around 0.15 mL min−1 cm−2 during 166-hour continuous operation at 850 °C in the presence of carbon dioxide in the permeate gas stream. Such stable performance highlights its chemical stability. Another attractive advantage of the dual-phase SCY-SDC laminated membrane lies in the minor discrepancy of the thermal expansion coefficient of SCY (α = 1.12·10−5 K−1) to that of SDC (α = 1.28·10−5 K−1) as obtained by dilatometry from room temperature to 1500 °C, which ensures its mechanical integrity during repeated thermal cycles.
Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2018.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2018.12.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu