- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 GermanyPublisher:MDPI AG Authors: Martin Robinius; Felix ter Stein; Adrien Schwane; Detlef Stolten;The increasing deployment of variable renewable energy sources (VRES) is changing the source regime in the electrical energy sector. However, VRES feed-in from wind turbines and photovoltaic systems is dependent on the weather and only partially predictable. As a result, existing energy sector models must be re-evaluated and adjusted as necessary. In long-term forecast models, the expansion of VRES must be taken into account so that future local overloads can be identified and measures taken. This paper focuses on one input factor for electrical energy models: the electrical load. We compare two different types to describe this, namely vertical grid load and total load. For the total load, an approach for a spatially-resolved electrical load model is developed and applied at the municipal level in Germany. This model provides detailed information about the load at a quarterly-hour resolution across 11,268 German municipalities. In municipalities with concentrations of energy-intensive industry, high loads are expected, which our simulation reproduces with a good degree of accuracy. Our results also show that municipalities with energy-intensive industry have a higher simulated electric load than neighboring municipalities that do not host energy-intensive industries. The underlying data was extracted from publically accessible sources and therefore the methodology introduced is also applicable to other countries.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/3/361/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2017Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/3/361/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2017Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 GermanyPublisher:MDPI AG Authors: Martin Robinius; Felix ter Stein; Adrien Schwane; Detlef Stolten;The increasing deployment of variable renewable energy sources (VRES) is changing the source regime in the electrical energy sector. However, VRES feed-in from wind turbines and photovoltaic systems is dependent on the weather and only partially predictable. As a result, existing energy sector models must be re-evaluated and adjusted as necessary. In long-term forecast models, the expansion of VRES must be taken into account so that future local overloads can be identified and measures taken. This paper focuses on one input factor for electrical energy models: the electrical load. We compare two different types to describe this, namely vertical grid load and total load. For the total load, an approach for a spatially-resolved electrical load model is developed and applied at the municipal level in Germany. This model provides detailed information about the load at a quarterly-hour resolution across 11,268 German municipalities. In municipalities with concentrations of energy-intensive industry, high loads are expected, which our simulation reproduces with a good degree of accuracy. Our results also show that municipalities with energy-intensive industry have a higher simulated electric load than neighboring municipalities that do not host energy-intensive industries. The underlying data was extracted from publically accessible sources and therefore the methodology introduced is also applicable to other countries.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/3/361/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2017Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/3/361/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2017Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Royal Society of Chemistry (RSC) Andre Hoffrichter; Larissa Doré; Vanessa Tietze; Martin Robinius; Sebastian Schiebahn; Detlef Stolten; Detlef Stolten; Armin Schnettler; Moritz Nobis; Thomas Grube; Stephan Raths; Grit Walther; Laura Elisabeth Hombach;doi: 10.1039/c8se00008e
Our study integrates power sector modelling with hydrogen infrastructure analysis and life cycle assessment complementing research on power-to-gas pathway alternatives.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00008e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00008e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Royal Society of Chemistry (RSC) Andre Hoffrichter; Larissa Doré; Vanessa Tietze; Martin Robinius; Sebastian Schiebahn; Detlef Stolten; Detlef Stolten; Armin Schnettler; Moritz Nobis; Thomas Grube; Stephan Raths; Grit Walther; Laura Elisabeth Hombach;doi: 10.1039/c8se00008e
Our study integrates power sector modelling with hydrogen infrastructure analysis and life cycle assessment complementing research on power-to-gas pathway alternatives.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00008e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00008e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Lars Nolting; Jan Priesmann; Christina Kockel; Georg Rödler; Tobias Brauweiler; Ines Hauer; Martin Robinius; Aaron Praktiknjo;In 2011, the concept of Industry 4.0 was introduced and later adopted by the German government, paving the way for a new industrial revolution in Germany. The high significance of this topic is reflected by the large number of corresponding publications. Additionally, the regional focus of research is widespread on a global level and often differs even at a national level. This paper generates transparency regarding the adoption of the concept of Industry 4.0 by analyzing the locations of main contributors within the research field on an international, European, and German-national level. Further, it examines the regionally different foci concerning the concept of Industry 4.0. Having identified four main aspects linked to Industry 4.0 within a pre-study, a quantitative literature research was conducted based on over 800 published papers. The results were further visualized with QGIS. Looking at the results, it can be concluded that the German research community is virtually the only user of the term Industry 4.0, while other institutions seem to link their research to other related concepts. On a German level, the majority of the analyzed studies originate from Southern and Western Germany. North Rhine-Westphalia and the Aachen/Jülich region, in particular, represent main contributors.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4659/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4659/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Lars Nolting; Jan Priesmann; Christina Kockel; Georg Rödler; Tobias Brauweiler; Ines Hauer; Martin Robinius; Aaron Praktiknjo;In 2011, the concept of Industry 4.0 was introduced and later adopted by the German government, paving the way for a new industrial revolution in Germany. The high significance of this topic is reflected by the large number of corresponding publications. Additionally, the regional focus of research is widespread on a global level and often differs even at a national level. This paper generates transparency regarding the adoption of the concept of Industry 4.0 by analyzing the locations of main contributors within the research field on an international, European, and German-national level. Further, it examines the regionally different foci concerning the concept of Industry 4.0. Having identified four main aspects linked to Industry 4.0 within a pre-study, a quantitative literature research was conducted based on over 800 published papers. The results were further visualized with QGIS. Looking at the results, it can be concluded that the German research community is virtually the only user of the term Industry 4.0, while other institutions seem to link their research to other related concepts. On a German level, the majority of the analyzed studies originate from Southern and Western Germany. North Rhine-Westphalia and the Aachen/Jülich region, in particular, represent main contributors.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4659/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4659/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2018 GermanyPublisher:Elsevier BV Martin Robinius; Detlef Stolten; Detlef Stolten; Peter Stenzel; Timo Kannengiesser; Timo Kannengiesser; Peter Markewitz; Leander Kotzur;Abstract The emergency power supply functionality of photovoltaic battery energy storage systems (PV BESS) is evaluated based on a case study, which comprises a single-family house in Germany with defined electricity load profile and installed PV BESS. Key factors, which influence the emergency power functionality, are: begin and duration of the blackout, electricity load and PV production profile during blackout and BESS state of charge at the beginning of the blackout. The backup functionality especially depends on the available electricity generation from the PV system and shows therefore a strong seasonal dependency. In case of a blackout, a PV BESS generally makes electricity available, which would not be available to a household without PV BESS. However, the complete coverage of longer blackout periods from PV BESS under the assumption of a normal load profile (100% autarkic system operation) is limited to only a few high PV production periods during the year. In this context, load reduction and load shifting by adapted user behavior during a blackout shows high potential to increase the backup supply functionality and the overall security of energy supply by extending the period during which the reduced household electricity load can be covered from the PV BESS.
Energy Procedia arrow_drop_down Juelich Shared Electronic ResourcesPart of book or chapter of book . 2018Data sources: Juelich Shared Electronic Resourcesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Juelich Shared Electronic ResourcesPart of book or chapter of book . 2018Data sources: Juelich Shared Electronic Resourcesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2018 GermanyPublisher:Elsevier BV Martin Robinius; Detlef Stolten; Detlef Stolten; Peter Stenzel; Timo Kannengiesser; Timo Kannengiesser; Peter Markewitz; Leander Kotzur;Abstract The emergency power supply functionality of photovoltaic battery energy storage systems (PV BESS) is evaluated based on a case study, which comprises a single-family house in Germany with defined electricity load profile and installed PV BESS. Key factors, which influence the emergency power functionality, are: begin and duration of the blackout, electricity load and PV production profile during blackout and BESS state of charge at the beginning of the blackout. The backup functionality especially depends on the available electricity generation from the PV system and shows therefore a strong seasonal dependency. In case of a blackout, a PV BESS generally makes electricity available, which would not be available to a household without PV BESS. However, the complete coverage of longer blackout periods from PV BESS under the assumption of a normal load profile (100% autarkic system operation) is limited to only a few high PV production periods during the year. In this context, load reduction and load shifting by adapted user behavior during a blackout shows high potential to increase the backup supply functionality and the overall security of energy supply by extending the period during which the reduced household electricity load can be covered from the PV BESS.
Energy Procedia arrow_drop_down Juelich Shared Electronic ResourcesPart of book or chapter of book . 2018Data sources: Juelich Shared Electronic Resourcesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Juelich Shared Electronic ResourcesPart of book or chapter of book . 2018Data sources: Juelich Shared Electronic Resourcesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2018 GermanyPublisher:MDPI AG Authors: David Ryberg; Martin Robinius; Detlef Stolten;The amount and distribution of land which is eligible for renewable energy sources (RES) is fundamental to the role these technologies will play in future energy systems. Unfortunately, land eligibility (LE) investigations in the literature are plagued by many inconsistencies between studies, impeding the work of researchers and policy makers interested in energy system development planning. As one factor contributing to this, the criteria used to construct land exclusion constraints have not been the focus of scientific investigation on a large scale, and as such their interactions are not well known.Therefore, an open source LE framework was used to perform evaluations in the European context of 36 commonly used constraints. After direct visualization, three measures by which these constraints are valuable to an LE analysis were computed: independence, exclusivity, and overlap. Results show extensive spatial sensitivity to constrain influence. Furthermore, some constraints, such as proximity to agriculture and woodland areas, rank high in all three measures; others, such as distance from airports and camping sites, consistently rank low; and still others, such as elevation, score highly in one measure but not the others. With these results, LE researchers can better understand the contributions of the constraints used in their analyses.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1246/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1246/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2018 GermanyPublisher:MDPI AG Authors: David Ryberg; Martin Robinius; Detlef Stolten;The amount and distribution of land which is eligible for renewable energy sources (RES) is fundamental to the role these technologies will play in future energy systems. Unfortunately, land eligibility (LE) investigations in the literature are plagued by many inconsistencies between studies, impeding the work of researchers and policy makers interested in energy system development planning. As one factor contributing to this, the criteria used to construct land exclusion constraints have not been the focus of scientific investigation on a large scale, and as such their interactions are not well known.Therefore, an open source LE framework was used to perform evaluations in the European context of 36 commonly used constraints. After direct visualization, three measures by which these constraints are valuable to an LE analysis were computed: independence, exclusivity, and overlap. Results show extensive spatial sensitivity to constrain influence. Furthermore, some constraints, such as proximity to agriculture and woodland areas, rank high in all three measures; others, such as distance from airports and camping sites, consistently rank low; and still others, such as elevation, score highly in one measure but not the others. With these results, LE researchers can better understand the contributions of the constraints used in their analyses.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1246/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1246/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2019 United Kingdom, Germany, GermanyPublisher:Elsevier BV Funded by:DFG | Mathematical Modelling, S...DFG| Mathematical Modelling, Simulation and Optimization Using the Example of Gas NetworksMartin Schmidt; Detlef Stolten; Detlef Stolten; Jochen Linßen; Johannes Thürauf; Markus Reuß; Martin Robinius; Lara Welder; Lara Welder; Lars Schewe; Thomas Grube;Common energy system models that integrate hydrogen transport in pipelines typically simplify fluid flow models and reduce the network size in order to achieve solutions quickly. This contribution analyzes two different types of pipeline network topologies (namely, star and tree networks) and two different fluid flow models (linear and nonlinear) for a given hydrogen capacity scenario of electrical reconversion in Germany to analyze the impact of these simplifications. For each network topology, robust demand and supply scenarios are generated. The results show that a simplified topology, as well as the consideration of detailed fluid flow, could heavily influence the total pipeline investment costs. For the given capacity scenario, an overall cost reduction of the pipeline costs of 37% is observed for the star network with linear cost compared to the tree network with nonlinear fluid flow. The impact of these improvements regarding the total electricity reconversion costs has led to a cost reduction of 1.4%, which is fairly small. Therefore, the integration of nonlinearities into energy system optimization models is not recommended due to their high computational burden. However, the applied method for generating robust demand and supply scenarios improved the credibility and robustness of the network topology, while the simplified fluid flow consideration can lead to infeasibilities. Thus, we suggest the utilization of the nonlinear model for post-processing to prove the feasibility of the results and strengthen their credibility, while retaining the computational performance of linear modeling.
engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2019 United Kingdom, Germany, GermanyPublisher:Elsevier BV Funded by:DFG | Mathematical Modelling, S...DFG| Mathematical Modelling, Simulation and Optimization Using the Example of Gas NetworksMartin Schmidt; Detlef Stolten; Detlef Stolten; Jochen Linßen; Johannes Thürauf; Markus Reuß; Martin Robinius; Lara Welder; Lara Welder; Lars Schewe; Thomas Grube;Common energy system models that integrate hydrogen transport in pipelines typically simplify fluid flow models and reduce the network size in order to achieve solutions quickly. This contribution analyzes two different types of pipeline network topologies (namely, star and tree networks) and two different fluid flow models (linear and nonlinear) for a given hydrogen capacity scenario of electrical reconversion in Germany to analyze the impact of these simplifications. For each network topology, robust demand and supply scenarios are generated. The results show that a simplified topology, as well as the consideration of detailed fluid flow, could heavily influence the total pipeline investment costs. For the given capacity scenario, an overall cost reduction of the pipeline costs of 37% is observed for the star network with linear cost compared to the tree network with nonlinear fluid flow. The impact of these improvements regarding the total electricity reconversion costs has led to a cost reduction of 1.4%, which is fairly small. Therefore, the integration of nonlinearities into energy system optimization models is not recommended due to their high computational burden. However, the applied method for generating robust demand and supply scenarios improved the credibility and robustness of the network topology, while the simplified fluid flow consideration can lead to infeasibilities. Thus, we suggest the utilization of the nonlinear model for post-processing to prove the feasibility of the results and strengthen their credibility, while retaining the computational performance of linear modeling.
engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Kannengießer, Timo; Hoffmann, Maximilian; Kotzur, Leander; Stenzel, Peter; Schuetz, Fabian; Peters, Klaus; Nykamp, Stefan; Stolten, Detlef; Robinius, Martin;The complexity of Mixed-Integer Linear Programs (MILPs) increases with the number of nodes in energy system models. An increasing complexity constitutes a high computational load that can limit the scale of the energy system model. Hence, methods are sought to reduce this complexity. In this paper, we present a new 2-Level Approach to MILP energy system models that determines the system design through a combination of continuous and discrete decisions. On the first level, data reduction methods are used to determine the discrete design decisions in a simplified solution space. Those decisions are then fixed, and on the second level the full dataset is used to ex-tract the exact scaling of the chosen technologies. The performance of the new 2-Level Approach is evaluated for a case study of an urban energy system with six buildings and an island system based on a high share of renewable energy technologies. The results of the studies show a high accuracy with respect to the total annual costs, chosen system structure, installed capacities and peak load with the 2-Level Approach compared to the results of a single level optimization. The computational load is thereby reduced by more than one order of magnitude.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Kannengießer, Timo; Hoffmann, Maximilian; Kotzur, Leander; Stenzel, Peter; Schuetz, Fabian; Peters, Klaus; Nykamp, Stefan; Stolten, Detlef; Robinius, Martin;The complexity of Mixed-Integer Linear Programs (MILPs) increases with the number of nodes in energy system models. An increasing complexity constitutes a high computational load that can limit the scale of the energy system model. Hence, methods are sought to reduce this complexity. In this paper, we present a new 2-Level Approach to MILP energy system models that determines the system design through a combination of continuous and discrete decisions. On the first level, data reduction methods are used to determine the discrete design decisions in a simplified solution space. Those decisions are then fixed, and on the second level the full dataset is used to ex-tract the exact scaling of the chosen technologies. The performance of the new 2-Level Approach is evaluated for a case study of an urban energy system with six buildings and an island system based on a high share of renewable energy technologies. The results of the studies show a high accuracy with respect to the total annual costs, chosen system structure, installed capacities and peak load with the 2-Level Approach compared to the results of a single level optimization. The computational load is thereby reduced by more than one order of magnitude.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Jianlei Liu; Eric Braun; Clemens Düpmeier; Patrick Kuckertz; D. Severin Ryberg; Martin Robinius; Detlef Stolten; Veit Hagenmeyer;Scientists and engineers involved in the design of complex system solutions use computational workflows for their evaluations. Along with growing system complexity, the complexity of these workflows also increases. Without integration tools, scientists and engineers are often highly concerned with how to integrate software tools and model sets, which hinders their original research or engineering aims. Therefore, a new framework for streamlining the creation and usage of automated computational workflows is introduced in the present article. It uses state-of-the-art technologies for automation (e.g., container-automation) and coordination (e.g., distributed message oriented middleware), and a microservice-based architecture for novel distributed process execution and coordination. It also supports co-simulations as part of larger workflows including additional auxiliary computational tasks, e.g., forecasting or data transformation. Using Apache NiFi, an easy-to-use web interface is provided to create, run and control workflows without the need to be concerned with the underlying computing infrastructure. Initial framework testing via the implementation of a real-world workflow underpins promising performance in the realms of parallelizability, low overheads and reliable coordination.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/4/728/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9040728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/4/728/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9040728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Jianlei Liu; Eric Braun; Clemens Düpmeier; Patrick Kuckertz; D. Severin Ryberg; Martin Robinius; Detlef Stolten; Veit Hagenmeyer;Scientists and engineers involved in the design of complex system solutions use computational workflows for their evaluations. Along with growing system complexity, the complexity of these workflows also increases. Without integration tools, scientists and engineers are often highly concerned with how to integrate software tools and model sets, which hinders their original research or engineering aims. Therefore, a new framework for streamlining the creation and usage of automated computational workflows is introduced in the present article. It uses state-of-the-art technologies for automation (e.g., container-automation) and coordination (e.g., distributed message oriented middleware), and a microservice-based architecture for novel distributed process execution and coordination. It also supports co-simulations as part of larger workflows including additional auxiliary computational tasks, e.g., forecasting or data transformation. Using Apache NiFi, an easy-to-use web interface is provided to create, run and control workflows without the need to be concerned with the underlying computing infrastructure. Initial framework testing via the implementation of a real-world workflow underpins promising performance in the realms of parallelizability, low overheads and reliable coordination.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/4/728/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9040728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/4/728/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9040728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Natalie Ebersbach; Peter Stenzel; Lara Welder; Martin Robinius; Detlef Stolten; Detlef Stolten; Peter Markewitz; Bernd Emonts;Abstract For this study, a spatially and temporally resolved optimization model was used to investigate and economically evaluate pathways for using surplus electricity to cover positive residual loads by means of different technologies to reconvert hydrogen into electricity. The associated technology pathways consist of electrolyzers, salt caverns, hydrogen pipelines, power cables, and various technologies for reconversion into electricity. The investigations were conducted based on an energy scenario for 2050 in which surplus electricity from northern Germany is available to cover the electricity grid load in the federal state of North Rhine-Westphalia (NRW). A key finding of the pathway analysis is that NRW's electricity demand can be covered entirely by renewable energy sources in this scenario, which involves CO2 savings of 44.4 million tons of CO2/a in comparison to the positive residual load being covered from a conventional power plant fleet. The pathway involving CCGT (combined cycle gas turbines) as hydrogen reconversion option was identified as being the most cost effective (total investment: € 43.1 billion, electricity generation costs of reconversion: € 176/MWh). Large-scale hydrogen storage and reconversion as well as the use of the hydrogen infrastructure built for this purpose can make a meaningful contribution to the expansion of the electricity grid. However, for reasons of efficiency, substituting the electricity grid expansion entirely with hydrogen reconversion systems does not make sense from an economic standpoint. Furthermore, the hydrogen reconversion pathways evaluated, including large-scale storage, significantly contribute to the security of the energy supply and to secured power generation capacities.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.11.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.11.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Natalie Ebersbach; Peter Stenzel; Lara Welder; Martin Robinius; Detlef Stolten; Detlef Stolten; Peter Markewitz; Bernd Emonts;Abstract For this study, a spatially and temporally resolved optimization model was used to investigate and economically evaluate pathways for using surplus electricity to cover positive residual loads by means of different technologies to reconvert hydrogen into electricity. The associated technology pathways consist of electrolyzers, salt caverns, hydrogen pipelines, power cables, and various technologies for reconversion into electricity. The investigations were conducted based on an energy scenario for 2050 in which surplus electricity from northern Germany is available to cover the electricity grid load in the federal state of North Rhine-Westphalia (NRW). A key finding of the pathway analysis is that NRW's electricity demand can be covered entirely by renewable energy sources in this scenario, which involves CO2 savings of 44.4 million tons of CO2/a in comparison to the positive residual load being covered from a conventional power plant fleet. The pathway involving CCGT (combined cycle gas turbines) as hydrogen reconversion option was identified as being the most cost effective (total investment: € 43.1 billion, electricity generation costs of reconversion: € 176/MWh). Large-scale hydrogen storage and reconversion as well as the use of the hydrogen infrastructure built for this purpose can make a meaningful contribution to the expansion of the electricity grid. However, for reasons of efficiency, substituting the electricity grid expansion entirely with hydrogen reconversion systems does not make sense from an economic standpoint. Furthermore, the hydrogen reconversion pathways evaluated, including large-scale storage, significantly contribute to the security of the energy supply and to secured power generation capacities.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.11.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.11.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Martin Robinius; Leander Kotzur; Detlef Stolten; Detlef Stolten; Peter Markewitz;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Martin Robinius; Leander Kotzur; Detlef Stolten; Detlef Stolten; Peter Markewitz;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 GermanyPublisher:MDPI AG Authors: Martin Robinius; Felix ter Stein; Adrien Schwane; Detlef Stolten;The increasing deployment of variable renewable energy sources (VRES) is changing the source regime in the electrical energy sector. However, VRES feed-in from wind turbines and photovoltaic systems is dependent on the weather and only partially predictable. As a result, existing energy sector models must be re-evaluated and adjusted as necessary. In long-term forecast models, the expansion of VRES must be taken into account so that future local overloads can be identified and measures taken. This paper focuses on one input factor for electrical energy models: the electrical load. We compare two different types to describe this, namely vertical grid load and total load. For the total load, an approach for a spatially-resolved electrical load model is developed and applied at the municipal level in Germany. This model provides detailed information about the load at a quarterly-hour resolution across 11,268 German municipalities. In municipalities with concentrations of energy-intensive industry, high loads are expected, which our simulation reproduces with a good degree of accuracy. Our results also show that municipalities with energy-intensive industry have a higher simulated electric load than neighboring municipalities that do not host energy-intensive industries. The underlying data was extracted from publically accessible sources and therefore the methodology introduced is also applicable to other countries.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/3/361/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2017Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/3/361/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2017Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017 GermanyPublisher:MDPI AG Authors: Martin Robinius; Felix ter Stein; Adrien Schwane; Detlef Stolten;The increasing deployment of variable renewable energy sources (VRES) is changing the source regime in the electrical energy sector. However, VRES feed-in from wind turbines and photovoltaic systems is dependent on the weather and only partially predictable. As a result, existing energy sector models must be re-evaluated and adjusted as necessary. In long-term forecast models, the expansion of VRES must be taken into account so that future local overloads can be identified and measures taken. This paper focuses on one input factor for electrical energy models: the electrical load. We compare two different types to describe this, namely vertical grid load and total load. For the total load, an approach for a spatially-resolved electrical load model is developed and applied at the municipal level in Germany. This model provides detailed information about the load at a quarterly-hour resolution across 11,268 German municipalities. In municipalities with concentrations of energy-intensive industry, high loads are expected, which our simulation reproduces with a good degree of accuracy. Our results also show that municipalities with energy-intensive industry have a higher simulated electric load than neighboring municipalities that do not host energy-intensive industries. The underlying data was extracted from publically accessible sources and therefore the methodology introduced is also applicable to other countries.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/3/361/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2017Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/3/361/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2017Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Royal Society of Chemistry (RSC) Andre Hoffrichter; Larissa Doré; Vanessa Tietze; Martin Robinius; Sebastian Schiebahn; Detlef Stolten; Detlef Stolten; Armin Schnettler; Moritz Nobis; Thomas Grube; Stephan Raths; Grit Walther; Laura Elisabeth Hombach;doi: 10.1039/c8se00008e
Our study integrates power sector modelling with hydrogen infrastructure analysis and life cycle assessment complementing research on power-to-gas pathway alternatives.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00008e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00008e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Royal Society of Chemistry (RSC) Andre Hoffrichter; Larissa Doré; Vanessa Tietze; Martin Robinius; Sebastian Schiebahn; Detlef Stolten; Detlef Stolten; Armin Schnettler; Moritz Nobis; Thomas Grube; Stephan Raths; Grit Walther; Laura Elisabeth Hombach;doi: 10.1039/c8se00008e
Our study integrates power sector modelling with hydrogen infrastructure analysis and life cycle assessment complementing research on power-to-gas pathway alternatives.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00008e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00008e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Lars Nolting; Jan Priesmann; Christina Kockel; Georg Rödler; Tobias Brauweiler; Ines Hauer; Martin Robinius; Aaron Praktiknjo;In 2011, the concept of Industry 4.0 was introduced and later adopted by the German government, paving the way for a new industrial revolution in Germany. The high significance of this topic is reflected by the large number of corresponding publications. Additionally, the regional focus of research is widespread on a global level and often differs even at a national level. This paper generates transparency regarding the adoption of the concept of Industry 4.0 by analyzing the locations of main contributors within the research field on an international, European, and German-national level. Further, it examines the regionally different foci concerning the concept of Industry 4.0. Having identified four main aspects linked to Industry 4.0 within a pre-study, a quantitative literature research was conducted based on over 800 published papers. The results were further visualized with QGIS. Looking at the results, it can be concluded that the German research community is virtually the only user of the term Industry 4.0, while other institutions seem to link their research to other related concepts. On a German level, the majority of the analyzed studies originate from Southern and Western Germany. North Rhine-Westphalia and the Aachen/Jülich region, in particular, represent main contributors.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4659/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4659/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Lars Nolting; Jan Priesmann; Christina Kockel; Georg Rödler; Tobias Brauweiler; Ines Hauer; Martin Robinius; Aaron Praktiknjo;In 2011, the concept of Industry 4.0 was introduced and later adopted by the German government, paving the way for a new industrial revolution in Germany. The high significance of this topic is reflected by the large number of corresponding publications. Additionally, the regional focus of research is widespread on a global level and often differs even at a national level. This paper generates transparency regarding the adoption of the concept of Industry 4.0 by analyzing the locations of main contributors within the research field on an international, European, and German-national level. Further, it examines the regionally different foci concerning the concept of Industry 4.0. Having identified four main aspects linked to Industry 4.0 within a pre-study, a quantitative literature research was conducted based on over 800 published papers. The results were further visualized with QGIS. Looking at the results, it can be concluded that the German research community is virtually the only user of the term Industry 4.0, while other institutions seem to link their research to other related concepts. On a German level, the majority of the analyzed studies originate from Southern and Western Germany. North Rhine-Westphalia and the Aachen/Jülich region, in particular, represent main contributors.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4659/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/21/4659/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9214659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2018 GermanyPublisher:Elsevier BV Martin Robinius; Detlef Stolten; Detlef Stolten; Peter Stenzel; Timo Kannengiesser; Timo Kannengiesser; Peter Markewitz; Leander Kotzur;Abstract The emergency power supply functionality of photovoltaic battery energy storage systems (PV BESS) is evaluated based on a case study, which comprises a single-family house in Germany with defined electricity load profile and installed PV BESS. Key factors, which influence the emergency power functionality, are: begin and duration of the blackout, electricity load and PV production profile during blackout and BESS state of charge at the beginning of the blackout. The backup functionality especially depends on the available electricity generation from the PV system and shows therefore a strong seasonal dependency. In case of a blackout, a PV BESS generally makes electricity available, which would not be available to a household without PV BESS. However, the complete coverage of longer blackout periods from PV BESS under the assumption of a normal load profile (100% autarkic system operation) is limited to only a few high PV production periods during the year. In this context, load reduction and load shifting by adapted user behavior during a blackout shows high potential to increase the backup supply functionality and the overall security of energy supply by extending the period during which the reduced household electricity load can be covered from the PV BESS.
Energy Procedia arrow_drop_down Juelich Shared Electronic ResourcesPart of book or chapter of book . 2018Data sources: Juelich Shared Electronic Resourcesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Juelich Shared Electronic ResourcesPart of book or chapter of book . 2018Data sources: Juelich Shared Electronic Resourcesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 2018 GermanyPublisher:Elsevier BV Martin Robinius; Detlef Stolten; Detlef Stolten; Peter Stenzel; Timo Kannengiesser; Timo Kannengiesser; Peter Markewitz; Leander Kotzur;Abstract The emergency power supply functionality of photovoltaic battery energy storage systems (PV BESS) is evaluated based on a case study, which comprises a single-family house in Germany with defined electricity load profile and installed PV BESS. Key factors, which influence the emergency power functionality, are: begin and duration of the blackout, electricity load and PV production profile during blackout and BESS state of charge at the beginning of the blackout. The backup functionality especially depends on the available electricity generation from the PV system and shows therefore a strong seasonal dependency. In case of a blackout, a PV BESS generally makes electricity available, which would not be available to a household without PV BESS. However, the complete coverage of longer blackout periods from PV BESS under the assumption of a normal load profile (100% autarkic system operation) is limited to only a few high PV production periods during the year. In this context, load reduction and load shifting by adapted user behavior during a blackout shows high potential to increase the backup supply functionality and the overall security of energy supply by extending the period during which the reduced household electricity load can be covered from the PV BESS.
Energy Procedia arrow_drop_down Juelich Shared Electronic ResourcesPart of book or chapter of book . 2018Data sources: Juelich Shared Electronic Resourcesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Procedia arrow_drop_down Juelich Shared Electronic ResourcesPart of book or chapter of book . 2018Data sources: Juelich Shared Electronic Resourcesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2018 GermanyPublisher:MDPI AG Authors: David Ryberg; Martin Robinius; Detlef Stolten;The amount and distribution of land which is eligible for renewable energy sources (RES) is fundamental to the role these technologies will play in future energy systems. Unfortunately, land eligibility (LE) investigations in the literature are plagued by many inconsistencies between studies, impeding the work of researchers and policy makers interested in energy system development planning. As one factor contributing to this, the criteria used to construct land exclusion constraints have not been the focus of scientific investigation on a large scale, and as such their interactions are not well known.Therefore, an open source LE framework was used to perform evaluations in the European context of 36 commonly used constraints. After direct visualization, three measures by which these constraints are valuable to an LE analysis were computed: independence, exclusivity, and overlap. Results show extensive spatial sensitivity to constrain influence. Furthermore, some constraints, such as proximity to agriculture and woodland areas, rank high in all three measures; others, such as distance from airports and camping sites, consistently rank low; and still others, such as elevation, score highly in one measure but not the others. With these results, LE researchers can better understand the contributions of the constraints used in their analyses.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1246/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1246/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2018 GermanyPublisher:MDPI AG Authors: David Ryberg; Martin Robinius; Detlef Stolten;The amount and distribution of land which is eligible for renewable energy sources (RES) is fundamental to the role these technologies will play in future energy systems. Unfortunately, land eligibility (LE) investigations in the literature are plagued by many inconsistencies between studies, impeding the work of researchers and policy makers interested in energy system development planning. As one factor contributing to this, the criteria used to construct land exclusion constraints have not been the focus of scientific investigation on a large scale, and as such their interactions are not well known.Therefore, an open source LE framework was used to perform evaluations in the European context of 36 commonly used constraints. After direct visualization, three measures by which these constraints are valuable to an LE analysis were computed: independence, exclusivity, and overlap. Results show extensive spatial sensitivity to constrain influence. Furthermore, some constraints, such as proximity to agriculture and woodland areas, rank high in all three measures; others, such as distance from airports and camping sites, consistently rank low; and still others, such as elevation, score highly in one measure but not the others. With these results, LE researchers can better understand the contributions of the constraints used in their analyses.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1246/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1246/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2018Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2019 United Kingdom, Germany, GermanyPublisher:Elsevier BV Funded by:DFG | Mathematical Modelling, S...DFG| Mathematical Modelling, Simulation and Optimization Using the Example of Gas NetworksMartin Schmidt; Detlef Stolten; Detlef Stolten; Jochen Linßen; Johannes Thürauf; Markus Reuß; Martin Robinius; Lara Welder; Lara Welder; Lars Schewe; Thomas Grube;Common energy system models that integrate hydrogen transport in pipelines typically simplify fluid flow models and reduce the network size in order to achieve solutions quickly. This contribution analyzes two different types of pipeline network topologies (namely, star and tree networks) and two different fluid flow models (linear and nonlinear) for a given hydrogen capacity scenario of electrical reconversion in Germany to analyze the impact of these simplifications. For each network topology, robust demand and supply scenarios are generated. The results show that a simplified topology, as well as the consideration of detailed fluid flow, could heavily influence the total pipeline investment costs. For the given capacity scenario, an overall cost reduction of the pipeline costs of 37% is observed for the star network with linear cost compared to the tree network with nonlinear fluid flow. The impact of these improvements regarding the total electricity reconversion costs has led to a cost reduction of 1.4%, which is fairly small. Therefore, the integration of nonlinearities into energy system optimization models is not recommended due to their high computational burden. However, the applied method for generating robust demand and supply scenarios improved the credibility and robustness of the network topology, while the simplified fluid flow consideration can lead to infeasibilities. Thus, we suggest the utilization of the nonlinear model for post-processing to prove the feasibility of the results and strengthen their credibility, while retaining the computational performance of linear modeling.
engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2019 United Kingdom, Germany, GermanyPublisher:Elsevier BV Funded by:DFG | Mathematical Modelling, S...DFG| Mathematical Modelling, Simulation and Optimization Using the Example of Gas NetworksMartin Schmidt; Detlef Stolten; Detlef Stolten; Jochen Linßen; Johannes Thürauf; Markus Reuß; Martin Robinius; Lara Welder; Lara Welder; Lars Schewe; Thomas Grube;Common energy system models that integrate hydrogen transport in pipelines typically simplify fluid flow models and reduce the network size in order to achieve solutions quickly. This contribution analyzes two different types of pipeline network topologies (namely, star and tree networks) and two different fluid flow models (linear and nonlinear) for a given hydrogen capacity scenario of electrical reconversion in Germany to analyze the impact of these simplifications. For each network topology, robust demand and supply scenarios are generated. The results show that a simplified topology, as well as the consideration of detailed fluid flow, could heavily influence the total pipeline investment costs. For the given capacity scenario, an overall cost reduction of the pipeline costs of 37% is observed for the star network with linear cost compared to the tree network with nonlinear fluid flow. The impact of these improvements regarding the total electricity reconversion costs has led to a cost reduction of 1.4%, which is fairly small. Therefore, the integration of nonlinearities into energy system optimization models is not recommended due to their high computational burden. However, the applied method for generating robust demand and supply scenarios improved the credibility and robustness of the network topology, while the simplified fluid flow consideration can lead to infeasibilities. Thus, we suggest the utilization of the nonlinear model for post-processing to prove the feasibility of the results and strengthen their credibility, while retaining the computational performance of linear modeling.
engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert engrXiv arrow_drop_down https://doi.org/10.31224/osf.i...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.10.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Kannengießer, Timo; Hoffmann, Maximilian; Kotzur, Leander; Stenzel, Peter; Schuetz, Fabian; Peters, Klaus; Nykamp, Stefan; Stolten, Detlef; Robinius, Martin;The complexity of Mixed-Integer Linear Programs (MILPs) increases with the number of nodes in energy system models. An increasing complexity constitutes a high computational load that can limit the scale of the energy system model. Hence, methods are sought to reduce this complexity. In this paper, we present a new 2-Level Approach to MILP energy system models that determines the system design through a combination of continuous and discrete decisions. On the first level, data reduction methods are used to determine the discrete design decisions in a simplified solution space. Those decisions are then fixed, and on the second level the full dataset is used to ex-tract the exact scaling of the chosen technologies. The performance of the new 2-Level Approach is evaluated for a case study of an urban energy system with six buildings and an island system based on a high share of renewable energy technologies. The results of the studies show a high accuracy with respect to the total annual costs, chosen system structure, installed capacities and peak load with the 2-Level Approach compared to the results of a single level optimization. The computational load is thereby reduced by more than one order of magnitude.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Kannengießer, Timo; Hoffmann, Maximilian; Kotzur, Leander; Stenzel, Peter; Schuetz, Fabian; Peters, Klaus; Nykamp, Stefan; Stolten, Detlef; Robinius, Martin;The complexity of Mixed-Integer Linear Programs (MILPs) increases with the number of nodes in energy system models. An increasing complexity constitutes a high computational load that can limit the scale of the energy system model. Hence, methods are sought to reduce this complexity. In this paper, we present a new 2-Level Approach to MILP energy system models that determines the system design through a combination of continuous and discrete decisions. On the first level, data reduction methods are used to determine the discrete design decisions in a simplified solution space. Those decisions are then fixed, and on the second level the full dataset is used to ex-tract the exact scaling of the chosen technologies. The performance of the new 2-Level Approach is evaluated for a case study of an urban energy system with six buildings and an island system based on a high share of renewable energy technologies. The results of the studies show a high accuracy with respect to the total annual costs, chosen system structure, installed capacities and peak load with the 2-Level Approach compared to the results of a single level optimization. The computational load is thereby reduced by more than one order of magnitude.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Jianlei Liu; Eric Braun; Clemens Düpmeier; Patrick Kuckertz; D. Severin Ryberg; Martin Robinius; Detlef Stolten; Veit Hagenmeyer;Scientists and engineers involved in the design of complex system solutions use computational workflows for their evaluations. Along with growing system complexity, the complexity of these workflows also increases. Without integration tools, scientists and engineers are often highly concerned with how to integrate software tools and model sets, which hinders their original research or engineering aims. Therefore, a new framework for streamlining the creation and usage of automated computational workflows is introduced in the present article. It uses state-of-the-art technologies for automation (e.g., container-automation) and coordination (e.g., distributed message oriented middleware), and a microservice-based architecture for novel distributed process execution and coordination. It also supports co-simulations as part of larger workflows including additional auxiliary computational tasks, e.g., forecasting or data transformation. Using Apache NiFi, an easy-to-use web interface is provided to create, run and control workflows without the need to be concerned with the underlying computing infrastructure. Initial framework testing via the implementation of a real-world workflow underpins promising performance in the realms of parallelizability, low overheads and reliable coordination.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/4/728/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9040728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/4/728/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9040728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Jianlei Liu; Eric Braun; Clemens Düpmeier; Patrick Kuckertz; D. Severin Ryberg; Martin Robinius; Detlef Stolten; Veit Hagenmeyer;Scientists and engineers involved in the design of complex system solutions use computational workflows for their evaluations. Along with growing system complexity, the complexity of these workflows also increases. Without integration tools, scientists and engineers are often highly concerned with how to integrate software tools and model sets, which hinders their original research or engineering aims. Therefore, a new framework for streamlining the creation and usage of automated computational workflows is introduced in the present article. It uses state-of-the-art technologies for automation (e.g., container-automation) and coordination (e.g., distributed message oriented middleware), and a microservice-based architecture for novel distributed process execution and coordination. It also supports co-simulations as part of larger workflows including additional auxiliary computational tasks, e.g., forecasting or data transformation. Using Apache NiFi, an easy-to-use web interface is provided to create, run and control workflows without the need to be concerned with the underlying computing infrastructure. Initial framework testing via the implementation of a real-world workflow underpins promising performance in the realms of parallelizability, low overheads and reliable coordination.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/4/728/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9040728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/4/728/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9040728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Natalie Ebersbach; Peter Stenzel; Lara Welder; Martin Robinius; Detlef Stolten; Detlef Stolten; Peter Markewitz; Bernd Emonts;Abstract For this study, a spatially and temporally resolved optimization model was used to investigate and economically evaluate pathways for using surplus electricity to cover positive residual loads by means of different technologies to reconvert hydrogen into electricity. The associated technology pathways consist of electrolyzers, salt caverns, hydrogen pipelines, power cables, and various technologies for reconversion into electricity. The investigations were conducted based on an energy scenario for 2050 in which surplus electricity from northern Germany is available to cover the electricity grid load in the federal state of North Rhine-Westphalia (NRW). A key finding of the pathway analysis is that NRW's electricity demand can be covered entirely by renewable energy sources in this scenario, which involves CO2 savings of 44.4 million tons of CO2/a in comparison to the positive residual load being covered from a conventional power plant fleet. The pathway involving CCGT (combined cycle gas turbines) as hydrogen reconversion option was identified as being the most cost effective (total investment: € 43.1 billion, electricity generation costs of reconversion: € 176/MWh). Large-scale hydrogen storage and reconversion as well as the use of the hydrogen infrastructure built for this purpose can make a meaningful contribution to the expansion of the electricity grid. However, for reasons of efficiency, substituting the electricity grid expansion entirely with hydrogen reconversion systems does not make sense from an economic standpoint. Furthermore, the hydrogen reconversion pathways evaluated, including large-scale storage, significantly contribute to the security of the energy supply and to secured power generation capacities.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.11.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.11.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Natalie Ebersbach; Peter Stenzel; Lara Welder; Martin Robinius; Detlef Stolten; Detlef Stolten; Peter Markewitz; Bernd Emonts;Abstract For this study, a spatially and temporally resolved optimization model was used to investigate and economically evaluate pathways for using surplus electricity to cover positive residual loads by means of different technologies to reconvert hydrogen into electricity. The associated technology pathways consist of electrolyzers, salt caverns, hydrogen pipelines, power cables, and various technologies for reconversion into electricity. The investigations were conducted based on an energy scenario for 2050 in which surplus electricity from northern Germany is available to cover the electricity grid load in the federal state of North Rhine-Westphalia (NRW). A key finding of the pathway analysis is that NRW's electricity demand can be covered entirely by renewable energy sources in this scenario, which involves CO2 savings of 44.4 million tons of CO2/a in comparison to the positive residual load being covered from a conventional power plant fleet. The pathway involving CCGT (combined cycle gas turbines) as hydrogen reconversion option was identified as being the most cost effective (total investment: € 43.1 billion, electricity generation costs of reconversion: € 176/MWh). Large-scale hydrogen storage and reconversion as well as the use of the hydrogen infrastructure built for this purpose can make a meaningful contribution to the expansion of the electricity grid. However, for reasons of efficiency, substituting the electricity grid expansion entirely with hydrogen reconversion systems does not make sense from an economic standpoint. Furthermore, the hydrogen reconversion pathways evaluated, including large-scale storage, significantly contribute to the security of the energy supply and to secured power generation capacities.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.11.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.11.194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Martin Robinius; Leander Kotzur; Detlef Stolten; Detlef Stolten; Peter Markewitz;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Martin Robinius; Leander Kotzur; Detlef Stolten; Detlef Stolten; Peter Markewitz;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu