- home
- Advanced Search
Filters
Year range
-chevron_right GOSource
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Wawan Gunawan A. Kadir; Toshifumi Matsuoka; Kyosuke Onishi; Vani Mutia Sari; Benyamin Sapiie; Aurio Erdi; Keigo Kitamura; Shun Chiyonobu; Alfian Bahar; Harya Danio; Takeshi Tsuji; Yasuhiro Yamada; Algifari Muhammad;AbstractClick here and insert your abstract text. Physical properties of reservoir and seal-layer samples are essential information to evaluate the storage and seal potential and to predict long term CO2 behaviour in reservoir. In this study, we measure the elastic wave velocities (Vp and Vs), porosity and density of sandstone, limestone and lime-mudstone samples are measured of Ngrayong Fm. and Bulu Fm, Central Java, Indonesia. The sandstones indicate low Vp, Vs, density and high porosity. These results suggest that sandstones on Ngrayong Fm. have large porosity and became important candidate of CO2 reservoir. On the other hand, lime- mudstone indicates high velocities with low porosity and point out that they have enough potential to be sealing layer of injected CO2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Heuer, Verena B; Inagaki, F; Morono, Yuki; Kubo, Y; Spivack, Arthur J; Viehweger, Bernhard; Treude, Tina; Beulig, F; Schubotz, Florence; Tonai, S; Bowden, Stephen A; Cramm, M; Henkel, Susann; Hirose, Takehiro; Homola, K L; Hoshino, Tatsuhiko; Ijiri, Akira; Imachi, H; Kamiya, N; Kaneko, Masanori; Lagostina, Lorenzo; Manners, Hayley R; McClelland, H L O; Metcalfe, K; Okutsu, N; Pan, Delu; Raudsepp, M J; Sauvage, Justine; Tsang, Man-Yin; Wang, D T; Whitaker, E; Yamamoto, Yuhji; Maeda, Lena; Adhikari, Rishi Ram; Glombitza, Clemens; Hamada, Y; Kallmeyer, Jens; Wendt, J; Wörmer, Lars; Yamada, Y; Kinoshita, Masataka; Hinrichs, Kai-Uwe;m CSF = depth of Core below Sea Floor in meters / m CSF-A: Distance from sea floor to sample within recovered core. This scale allows overlap at core and section boundaries. /m CSF-B: Distance from sea floor to sample within recovered core is compressed, if core recovery > 100%.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 JapanPublisher:Elsevier BV Authors: Chanrithyrouth Mao; Yasuhiro Yamada; Yasuhiro Yamada; Toshifumi Matsuoka;handle: 2433/191190
This study screens and rank Cambodian sedimentary basins in terms of their containment, capacity, and feasibility for the geological storage of CO[2]. The results of the screening and ranking procedure indicate that the Khmer Basin is the most suitable basin, followed by the Kampong Saom and Tonle Sap basins. A quantitative volumetric assessment-based evaluation of CO[2] storage capacity is performed on these three suitable basins. The evaluation yields a range in the national CO[2] storage capacity of 90 Mt (in structural traps) to 45 Gt (in hydrodynamic traps), representing low- and high-case estimates, respectively. The saline aquifers associated with this storage capacity should be considered prospective storage options as hydrodynamic traps because of containment and capacity issues associated with the structural traps. Eight major point sources of CO[2] are identified that have a combined output (estimated for 2008–2024) of 43.1 Mt annually and 82 billion m[3] in place, and the potentially prospective matched storage capacity is assumed. Overall, a combination of the initial suitabilities of the basins and estimates of prospective matched storage capacity shows that the Khmer, Kampong Saom, and Tonle Sap basins may provide a solution to the problem of reducing future atmospheric emissions. The present results should assist both exploration geologists and experts in carbon capture and storage to gain a better understanding of the CO[2]storage resources of Cambodia. However, the results should be regarded as preliminary because of the limited available data on which the assessments were based; future geological and geophysical data should improve the reliability of the estimates of carbon storage capacity reported here.
IRDB arrow_drop_down IRDBArticle . 2014Full-Text: http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/191190/1/j.ijggc.2014.08.016.pdfData sources: IRDBInternational Journal of Greenhouse Gas ControlArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRDB arrow_drop_down IRDBArticle . 2014Full-Text: http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/191190/1/j.ijggc.2014.08.016.pdfData sources: IRDBInternational Journal of Greenhouse Gas ControlArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Masami Hato; Benyamin Sapiie; Keigo Kitamura; Mohammad Rachmat Sule; Tutuka Ariadji; Wawan Gunawan A. Kadir; Rio I. Sebayang; Yasuhiro Yamada; Toru Takahashi; Djedi S. Widarto; Agung Prasetyo; Awali Priyono; Kyosuke Onishi; Ariesty Ratna Asikin; Toshifumi Matsuoka; Eko Widianto; Takeshi Tsuji;AbstractA pilot CCS project in Indonesia will be implemented in Gundih area, Central Java Province in Indonesia. Before the CO2 injection, the reservoirs for CO2 injection must be characterized carefully by conducting geophysical exploration as well as reservoir simulation, in order to make sure that the reservoir is suitable for CO2 storage. Here we report results of reservoir characterization and simulation for the determination of CO2 injection site in the Gundih area. Subsurface structures imaged on seismic reflection profiles indicate that the Ngrayong formation is one of the candidates for CO2 injection. We observed the outcrop of the Ngrayong formation and measured hydrological and geophysical properties (e.g., permeability, seismic velocity) of the rock samples obtained from outcrop and wells. The Ngrayong formation has layered structure and heterogeneous characteristics. Using (1) hydrological properties, (2) subsurface structures (i.e., geometry of the Ngrayong formation) and (3) physical properties predicted by integrating seismic and logging data via acoustic impedance inversion, we applied reservoir simulation and evaluated security of the CO2 injection sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Yoshihiro Nakatsuka; Toshifumi Matsuoka; Yasuhiro Yamada; Ziqiu Xue;AbstractTo make sure that CO2 is safely and securely stored in the reservoir, only way for us to know is to monitor the injected CO2. In most of the injection sites, monitoring is conducted to understand the behavior and distribution of CO2. Also we need to estimate the volume of CO2 quantitatively. In order to estimate the quantitative volume, we need to compute the volume from physical parameter like P-wave velocity or resistivity. For the P-wave velocity, recent studies show the way of computing saturation using Gassmann’s theory. But due to the study of Nagaoka, response of P-wave velocity becomes weak in high saturation. Because of the CO2 saturation more than 40% happening in the reservoir, seismic survey needs to be supplied by another theories. In this study we selected resistivity monitoring to overtake the weakness of seismic monitoring. By conducting series of resistivity measuring experiment of laboratory scale, we considered the saturation computing equation which can be thought as a formula to calculate CO2 saturation in the field. By using these equations computation of CO2 saturation in Nagaoka was conducted. By comparing several equations which can be thought to estimate the CO2 saturation in field data, we suggested a simple equation formed by resistivity and shale volume. By using this suggested equation, computational result showed good match to the estimated saturation computed from neutron porosity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Wawan Gunawan A. Kadir; Toshifumi Matsuoka; Kyosuke Onishi; Vani Mutia Sari; Benyamin Sapiie; Aurio Erdi; Keigo Kitamura; Shun Chiyonobu; Alfian Bahar; Harya Danio; Takeshi Tsuji; Yasuhiro Yamada; Algifari Muhammad;AbstractClick here and insert your abstract text. Physical properties of reservoir and seal-layer samples are essential information to evaluate the storage and seal potential and to predict long term CO2 behaviour in reservoir. In this study, we measure the elastic wave velocities (Vp and Vs), porosity and density of sandstone, limestone and lime-mudstone samples are measured of Ngrayong Fm. and Bulu Fm, Central Java, Indonesia. The sandstones indicate low Vp, Vs, density and high porosity. These results suggest that sandstones on Ngrayong Fm. have large porosity and became important candidate of CO2 reservoir. On the other hand, lime- mudstone indicates high velocities with low porosity and point out that they have enough potential to be sealing layer of injected CO2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Heuer, Verena B; Inagaki, F; Morono, Yuki; Kubo, Y; Spivack, Arthur J; Viehweger, Bernhard; Treude, Tina; Beulig, F; Schubotz, Florence; Tonai, S; Bowden, Stephen A; Cramm, M; Henkel, Susann; Hirose, Takehiro; Homola, K L; Hoshino, Tatsuhiko; Ijiri, Akira; Imachi, H; Kamiya, N; Kaneko, Masanori; Lagostina, Lorenzo; Manners, Hayley R; McClelland, H L O; Metcalfe, K; Okutsu, N; Pan, Delu; Raudsepp, M J; Sauvage, Justine; Tsang, Man-Yin; Wang, D T; Whitaker, E; Yamamoto, Yuhji; Maeda, Lena; Adhikari, Rishi Ram; Glombitza, Clemens; Hamada, Y; Kallmeyer, Jens; Wendt, J; Wörmer, Lars; Yamada, Y; Kinoshita, Masataka; Hinrichs, Kai-Uwe;m CSF = depth of Core below Sea Floor in meters / m CSF-A: Distance from sea floor to sample within recovered core. This scale allows overlap at core and section boundaries. /m CSF-B: Distance from sea floor to sample within recovered core is compressed, if core recovery > 100%.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 JapanPublisher:Elsevier BV Authors: Chanrithyrouth Mao; Yasuhiro Yamada; Yasuhiro Yamada; Toshifumi Matsuoka;handle: 2433/191190
This study screens and rank Cambodian sedimentary basins in terms of their containment, capacity, and feasibility for the geological storage of CO[2]. The results of the screening and ranking procedure indicate that the Khmer Basin is the most suitable basin, followed by the Kampong Saom and Tonle Sap basins. A quantitative volumetric assessment-based evaluation of CO[2] storage capacity is performed on these three suitable basins. The evaluation yields a range in the national CO[2] storage capacity of 90 Mt (in structural traps) to 45 Gt (in hydrodynamic traps), representing low- and high-case estimates, respectively. The saline aquifers associated with this storage capacity should be considered prospective storage options as hydrodynamic traps because of containment and capacity issues associated with the structural traps. Eight major point sources of CO[2] are identified that have a combined output (estimated for 2008–2024) of 43.1 Mt annually and 82 billion m[3] in place, and the potentially prospective matched storage capacity is assumed. Overall, a combination of the initial suitabilities of the basins and estimates of prospective matched storage capacity shows that the Khmer, Kampong Saom, and Tonle Sap basins may provide a solution to the problem of reducing future atmospheric emissions. The present results should assist both exploration geologists and experts in carbon capture and storage to gain a better understanding of the CO[2]storage resources of Cambodia. However, the results should be regarded as preliminary because of the limited available data on which the assessments were based; future geological and geophysical data should improve the reliability of the estimates of carbon storage capacity reported here.
IRDB arrow_drop_down IRDBArticle . 2014Full-Text: http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/191190/1/j.ijggc.2014.08.016.pdfData sources: IRDBInternational Journal of Greenhouse Gas ControlArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRDB arrow_drop_down IRDBArticle . 2014Full-Text: http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/191190/1/j.ijggc.2014.08.016.pdfData sources: IRDBInternational Journal of Greenhouse Gas ControlArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Masami Hato; Benyamin Sapiie; Keigo Kitamura; Mohammad Rachmat Sule; Tutuka Ariadji; Wawan Gunawan A. Kadir; Rio I. Sebayang; Yasuhiro Yamada; Toru Takahashi; Djedi S. Widarto; Agung Prasetyo; Awali Priyono; Kyosuke Onishi; Ariesty Ratna Asikin; Toshifumi Matsuoka; Eko Widianto; Takeshi Tsuji;AbstractA pilot CCS project in Indonesia will be implemented in Gundih area, Central Java Province in Indonesia. Before the CO2 injection, the reservoirs for CO2 injection must be characterized carefully by conducting geophysical exploration as well as reservoir simulation, in order to make sure that the reservoir is suitable for CO2 storage. Here we report results of reservoir characterization and simulation for the determination of CO2 injection site in the Gundih area. Subsurface structures imaged on seismic reflection profiles indicate that the Ngrayong formation is one of the candidates for CO2 injection. We observed the outcrop of the Ngrayong formation and measured hydrological and geophysical properties (e.g., permeability, seismic velocity) of the rock samples obtained from outcrop and wells. The Ngrayong formation has layered structure and heterogeneous characteristics. Using (1) hydrological properties, (2) subsurface structures (i.e., geometry of the Ngrayong formation) and (3) physical properties predicted by integrating seismic and logging data via acoustic impedance inversion, we applied reservoir simulation and evaluated security of the CO2 injection sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Yoshihiro Nakatsuka; Toshifumi Matsuoka; Yasuhiro Yamada; Ziqiu Xue;AbstractTo make sure that CO2 is safely and securely stored in the reservoir, only way for us to know is to monitor the injected CO2. In most of the injection sites, monitoring is conducted to understand the behavior and distribution of CO2. Also we need to estimate the volume of CO2 quantitatively. In order to estimate the quantitative volume, we need to compute the volume from physical parameter like P-wave velocity or resistivity. For the P-wave velocity, recent studies show the way of computing saturation using Gassmann’s theory. But due to the study of Nagaoka, response of P-wave velocity becomes weak in high saturation. Because of the CO2 saturation more than 40% happening in the reservoir, seismic survey needs to be supplied by another theories. In this study we selected resistivity monitoring to overtake the weakness of seismic monitoring. By conducting series of resistivity measuring experiment of laboratory scale, we considered the saturation computing equation which can be thought as a formula to calculate CO2 saturation in the field. By using these equations computation of CO2 saturation in Nagaoka was conducted. By comparing several equations which can be thought to estimate the CO2 saturation in field data, we suggested a simple equation formed by resistivity and shale volume. By using this suggested equation, computational result showed good match to the estimated saturation computed from neutron porosity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.01.287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu