- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Arjun Amar; Dan E. Chamberlain; Péter Batáry; Enrico Caprio; Dominic A. W. Henry; Dominic A. W. Henry; Chevonne Reynolds; Chevonne Reynolds;doi: 10.1111/geb.13122
handle: 2318/1764896
AbstractAimUrban biodiversity, and its associated ecosystem services, is an important component of the quality of life of urban residents. The "luxury effect" posits a positive association between biodiversity and socioeconomic status in urban areas, and is thus reflective of environmental injustice, as the benefits associated with biodiversity are not equitably shared across society. We aimed to determine the generality of the luxury effect, and to identify the factors causing its variation across published studies.LocationUrbanized landscapes globally.Time periodCurrent.Major taxa studiedTerrestrial animals and plants.MethodsWe tested the luxury effect across a sample of 337 estimates of the relationship between biodiversity measures and socioeconomic status from 96 studies via a meta‐analysis, addressing three hypotheses: (a) the luxury effect is more pronounced where water availability is limited, (b) the luxury effect is more pronounced in developing than developed countries, (c) the luxury effect is stronger in exotic compared to native species.ResultsThere was a significant overall luxury effect: there was a positive association between terrestrial biodiversity measures and socioeconomic status. The strength of the luxury effect was greater in arid areas. There was limited support for a stronger luxury effect in exotic species, but no support for any association with development status.Main conclusionsMany key and emerging climate impacts are concentrated in urban areas. Therefore, the degree of environmental injustice represented by the luxury effect may be amplified in the future, especially in arid regions. The objective to increase urban biodiversity through more equitable management and provision of water resources could form part of a wider strategy for sustainable development of cities to promote environmental justice, enhancing the quality of life of urban residents across all sectors of society. Challenges remain to ensure that any such strategy prioritizes conservation goals for native biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2012Embargo end date: 28 Aug 2012 Spain, Netherlands, United Kingdom, Italy, France, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | MOVINGTREES, EC | SCALES, EC | STEPEC| MOVINGTREES ,EC| SCALES ,EC| STEPDevictor,; V, .; Van, Swaay; C, .; Brereton,; T, .; Brotons,; L, .; Chamberlain, D.E.; Heliölä,; J, .; Herrando,; S, .; Julliard,; R, .; Kuussaari,; M, .; Lindström,; Reif,; J,; Roy, .; D, .; Schweiger,; O, .; Settele,; J, .; Stefanescu,; C, .; Van, Strien; A, .; Van, Turnhout; C, .; Vermouzek,; Z, .; Wallisdevries,; M, .; Wynhoff,; I, .; Jiguet,; F, .;International audience
Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncli...Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/doi:10.1038/...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate1667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncli...Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/doi:10.1038/...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate1667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 ItalyPublisher:PeerJ Chamberlain, Dan E.; Pedrini, Paolo; Brarnbilla, Mattia; Rolando, Antonio; Girardello, Marco;Alpine biodiversity is subject to a range of increasing threats, but the scarcity of data for many taxa means that it is difficult to assess the level and likely future impact of a given threat. Expert opinion can be a useful tool to address knowledge gaps in the absence of adequate data. Experts with experience in Alpine ecology were approached to rank threat levels for 69 Alpine bird species over the next 50 years for the whole European Alps in relation to ten categories: land abandonment, climate change, renewable energy, fire, forestry practices, grazing practices, hunting, leisure, mining and urbanization. There was a high degree of concordance in ranking of perceived threats among experts for most threat categories. The major overall perceived threats to Alpine birds identified through expert knowledge were land abandonment, urbanization, leisure and forestry, although other perceived threats were ranked highly for particular species groups (renewable energy and hunting for raptors, hunting for gamebirds). For groups of species defined according to their breeding habitat, open habitat species and treeline species were perceived as the most threatened. A spatial risk assessment tool based on summed scores for the whole community showed threat levels were highest for bird communities of the northern and western Alps. Development of the approaches given in this paper, including addressing biases in the selection of experts and adopting a more detailed ranking procedure, could prove useful in the future in identifying future threats, and in carrying out risk assessments based on levels of threat to the whole bird community.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.1723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.1723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Australia, ItalyPublisher:Wiley Funded by:EC | ALPINEFRAGMENTATIONEC| ALPINEFRAGMENTATIONAnna R. Renwick; Dario Massimino; Stuart E. Newson; CHAMBERLAIN, Daniel Edward; James W. Pearce Higgins; Alison Johnston;handle: 2318/133367
AbstractAim Existing climate envelope models give an indication of broad scale shifts in distribution, but do not specifically provide information on likely future population changes useful for conservation prioritization and planning. We demonstrate how these techniques can be developed to model likely future changes in absolute density and population size as a result of climate change.Location Great Britain.Methods Generalized linear models were used to model breeding densities of two northerly‐ and two southerly‐distributed bird species as a function of climate and land use. Models were built using count data from extensive national bird monitoring data and incorporated detectability to estimate absolute abundance. Projections of likely future changes in the distribution and abundance of these species were made by applying these models to projections of future climate change under two emissions scenarios.Results Models described current spatial variation in abundance for three of the four species and produced modelled current estimates of national populations that were similar to previously published estimates for all species. Climate change was projected to result in national population declines in the two northerly‐distributed species, with declines for Eurasian curlewNumenius arquataprojected to be particularly severe. Conversely, the abundances of the two southerly distributed species were projected to increase nationally. Projected maps of future abundance may be used to identify priority areas for the future conservation of each species.Main conclusions The analytical methods provide a framework to make projections of impacts of climate change on species abundance, rather than simply projected range changes. Outputs may be summarized at any spatial scale, providing information to inform future conservation planning at national, regional and local scales. Results suggest that as a consequence of climate change, northerly distributed bird species in Great Britain are likely to become an increasingly high conservation priority within the UK.
Diversity and Distri... arrow_drop_down Diversity and DistributionsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1472-4642.2011.00827.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Diversity and Distri... arrow_drop_down Diversity and DistributionsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1472-4642.2011.00827.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Brambilla M.; Scridel D.; Bazzi G.; Ilahiane L.; Iemma A.; Pedrini P.; Bassi E.; Bionda R.; Marchesi L.; Genero F.; Teufelbauer N.; Probst R.; Vrezec A.; Kmecl P.; Mihelic T.; Bogliani G.; Schmid H.; Assandri G.; Pontarini R.; Braunisch V.; Arlettaz R.; Chamberlain D.;doi: 10.1111/gcb.14953 , 10.48350/154150
pmid: 31804736
handle: 11368/3063018 , 2434/906218 , 2318/1727539 , 11579/174245
doi: 10.1111/gcb.14953 , 10.48350/154150
pmid: 31804736
handle: 11368/3063018 , 2434/906218 , 2318/1727539 , 11579/174245
AbstractInterspecific interactions are crucial in determining species occurrence and community assembly. Understanding these interactions is thus essential for correctly predicting species' responses to climate change. We focussed on an avian forest guild of four hole‐nesting species with differing sensitivities to climate that show a range of well‐understood reciprocal interactions, including facilitation, competition and predation. We modelled the potential distributions of black woodpecker and boreal, tawny and Ural owl, and tested whether the spatial patterns of the more widespread species (excluding Ural owl) were shaped by interspecific interactions. We then modelled the potential future distributions of all four species, evaluating how the predicted changes will alter the overlap between the species' ranges, and hence the spatial outcomes of interactions. Forest cover/type and climate were important determinants of habitat suitability for all species. Field data analysed with N‐mixture models revealed effects of interspecific interactions on current species abundance, especially in boreal owl (positive effects of black woodpecker, negative effects of tawny owl). Climate change will impact the assemblage both at species and guild levels, as the potential area of range overlap, relevant for species interactions, will change in both proportion and extent in the future. Boreal owl, the most climate‐sensitive species in the guild, will retreat, and the range overlap with its main predator, tawny owl, will increase in the remaining suitable area: climate change will thus impact on boreal owl both directly and indirectly. Climate change will cause the geographical alteration or disruption of species interaction networks, with different consequences for the species belonging to the guild and a likely spatial increase of competition and/or intraguild predation. Our work shows significant interactions and important potential changes in the overlap of areas suitable for the interacting species, which reinforce the importance of including relevant biotic interactions in predictive climate change models for increasing forecast accuracy.
Archivio Istituziona... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:Springer Science and Business Media LLC Nervo, Beatrice; Roggero, Angela; Chamberlain, Dan; Caprio, Enrico; Rolando, Antonio; Palestrini, Claudia;AbstractBackgroundIncreasing temperatures and changes in precipitation patterns threaten the existence of many organisms. It is therefore informative to identify the functional traits that underlie differences in desiccation resistance to understand the response of different species to changes in water availability resulting from climate change. We used adult dung beetles as model species due to their importance to ecosystem services. We investigated: (i) the effect of physiological (water loss rate, water loss tolerance, body water content), morphological (body mass) and ecological (nesting behaviour) traits on desiccation resistance; (ii) the role of phylogenetic relatedness in the above associations; and, (iii) whether relatively large or small individuals within a species have similar desiccation resistance and whether these responses are consistent across species.ResultsDesiccation resistance decreased with increasing water loss rate and increased with increasing water loss tolerance (i.e. proportion of initial water content lost at the time of death). A lack of consistent correlation between these traits due to phylogenetic relatedness suggests that the relationship is not determined by a shared evolutionary history. The advantage of a large body size in favouring desiccation resistance depended on the nesting behaviour of the dung beetles. In rollers (one species), large body sizes increased desiccation resistance, while in tunnelers and dwellers, desiccation resistance seemed not to be dependent on body mass. The phylogenetic correlation between desiccation resistance and nesting strategies was significant. Within each species, large individuals showed greater resistance to desiccation, and these responses were consistent across species.ConclusionsResistance to desiccation was explained mainly by the dung beetles’ ability to reduce water loss rate (avoidance) and to tolerate water loss (tolerance). A reduction in water availability may impose a selection pressure on body size that varies based on nesting strategies, even though these responses may be phylogenetically constrained. Changes in water availability are more likely to affect dweller species, and hence the ecosystem services they provide.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40850-021-00089-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40850-021-00089-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2007 United KingdomPublisher:Royal Society of Chemistry (RSC) Watt, A.D.; Bradshaw, R.H.W.; Young, J.; Alard, D.; Bolger, T.; Chamberlain, D.; Fernández-González, F.; Fuller, R.; Gurrea, P.; Henle, K.; Johnson, R.; Korsós, Z.; Lavelle, P.; Niemelä, J.; Norwicki, P.; Rebane, M.; Scheidegger, C.; Sousa, J.P.; Van Swaay, C.; Vanbergen, A.;The loss of biodiversity in Europe and elsewhere has been highlighted for several decades.1–5 The scale and potential consequences of this loss has led to action to combat it, notably the Convention on Biological Diversity (CBD). Realising that current policies and action taken to conserve biodivers...
NERC Open Research A... arrow_drop_down NERC Open Research ArchivePart of book or chapter of book . 2007Data sources: NERC Open Research Archivehttps://doi.org/10.1039/978184...Part of book or chapter of book . 2007 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/9781847557650-00135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research ArchivePart of book or chapter of book . 2007Data sources: NERC Open Research Archivehttps://doi.org/10.1039/978184...Part of book or chapter of book . 2007 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/9781847557650-00135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Switzerland, ItalyPublisher:Cambridge University Press (CUP) Brambilla M.; Resano-Mayor J.; Arlettaz R.; Bettega C.; Binggeli A.; Bogliani G.; Braunisch V.; Celada C.; Chamberlain D.; Carricaburu J. C.; Delgado M. D. M.; Fontanilles P.; Kmecl P.; Korner F.; Lindner R.; Pedrini P.; Pohacker J.; Rubinic B.; Schano C.; Scridel D.; Strinella E.; Teufelbauer N.; De Gabriel Hernando M.;handle: 11368/3062958 , 2434/906236
SummaryThe White-winged Snowfinch Montifringilla nivalis nivalis is assumed to be highly threatened by climate change, but this high elevation species has been little studied and the current breeding distribution is accurately known only for a minor portion of its range. Here, we provide a detailed and spatially explicit identification of the potentially suitable breeding areas for the Snowfinch. We modelled suitable areas in Europe and compared them with the currently known distribution. We built a distribution model using 14,574 records obtained during the breeding period that integrated climatic, topographic and land-cover variables, working at a 2-km spatial resolution with MaxEnt. The model performed well and was very robust; average annual temperature was the most important occurrence predictor (optimum between c.-3°C and 0°; unsuitable conditions below -10° and above 5°). The current European breeding range estimated by BirdLife International was almost three times greater than that classified as potentially suitable by our model. Discrepancies between our model and the distribution estimated by BirdLife International were particularly evident in eastern Europe, where the species is poorly monitored. Southern populations are likely more isolated and at major risk because of global warming. These differences have important implications for the supposed national responsibility for conservation of the species and highlight the need for new investigations on the species in the eastern part of its European range.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2020Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bird Conservation InternationalArticle . 2020 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0959270920000027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2020Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bird Conservation InternationalArticle . 2020 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0959270920000027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Arjun Amar; Dan E. Chamberlain; Péter Batáry; Enrico Caprio; Dominic A. W. Henry; Dominic A. W. Henry; Chevonne Reynolds; Chevonne Reynolds;doi: 10.1111/geb.13122
handle: 2318/1764896
AbstractAimUrban biodiversity, and its associated ecosystem services, is an important component of the quality of life of urban residents. The "luxury effect" posits a positive association between biodiversity and socioeconomic status in urban areas, and is thus reflective of environmental injustice, as the benefits associated with biodiversity are not equitably shared across society. We aimed to determine the generality of the luxury effect, and to identify the factors causing its variation across published studies.LocationUrbanized landscapes globally.Time periodCurrent.Major taxa studiedTerrestrial animals and plants.MethodsWe tested the luxury effect across a sample of 337 estimates of the relationship between biodiversity measures and socioeconomic status from 96 studies via a meta‐analysis, addressing three hypotheses: (a) the luxury effect is more pronounced where water availability is limited, (b) the luxury effect is more pronounced in developing than developed countries, (c) the luxury effect is stronger in exotic compared to native species.ResultsThere was a significant overall luxury effect: there was a positive association between terrestrial biodiversity measures and socioeconomic status. The strength of the luxury effect was greater in arid areas. There was limited support for a stronger luxury effect in exotic species, but no support for any association with development status.Main conclusionsMany key and emerging climate impacts are concentrated in urban areas. Therefore, the degree of environmental injustice represented by the luxury effect may be amplified in the future, especially in arid regions. The objective to increase urban biodiversity through more equitable management and provision of water resources could form part of a wider strategy for sustainable development of cities to promote environmental justice, enhancing the quality of life of urban residents across all sectors of society. Challenges remain to ensure that any such strategy prioritizes conservation goals for native biodiversity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2012Embargo end date: 28 Aug 2012 Spain, Netherlands, United Kingdom, Italy, France, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | MOVINGTREES, EC | SCALES, EC | STEPEC| MOVINGTREES ,EC| SCALES ,EC| STEPDevictor,; V, .; Van, Swaay; C, .; Brereton,; T, .; Brotons,; L, .; Chamberlain, D.E.; Heliölä,; J, .; Herrando,; S, .; Julliard,; R, .; Kuussaari,; M, .; Lindström,; Reif,; J,; Roy, .; D, .; Schweiger,; O, .; Settele,; J, .; Stefanescu,; C, .; Van, Strien; A, .; Van, Turnhout; C, .; Vermouzek,; Z, .; Wallisdevries,; M, .; Wynhoff,; I, .; Jiguet,; F, .;International audience
Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncli...Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/doi:10.1038/...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate1667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncli...Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/doi:10.1038/...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate1667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 ItalyPublisher:PeerJ Chamberlain, Dan E.; Pedrini, Paolo; Brarnbilla, Mattia; Rolando, Antonio; Girardello, Marco;Alpine biodiversity is subject to a range of increasing threats, but the scarcity of data for many taxa means that it is difficult to assess the level and likely future impact of a given threat. Expert opinion can be a useful tool to address knowledge gaps in the absence of adequate data. Experts with experience in Alpine ecology were approached to rank threat levels for 69 Alpine bird species over the next 50 years for the whole European Alps in relation to ten categories: land abandonment, climate change, renewable energy, fire, forestry practices, grazing practices, hunting, leisure, mining and urbanization. There was a high degree of concordance in ranking of perceived threats among experts for most threat categories. The major overall perceived threats to Alpine birds identified through expert knowledge were land abandonment, urbanization, leisure and forestry, although other perceived threats were ranked highly for particular species groups (renewable energy and hunting for raptors, hunting for gamebirds). For groups of species defined according to their breeding habitat, open habitat species and treeline species were perceived as the most threatened. A spatial risk assessment tool based on summed scores for the whole community showed threat levels were highest for bird communities of the northern and western Alps. Development of the approaches given in this paper, including addressing biases in the selection of experts and adopting a more detailed ranking procedure, could prove useful in the future in identifying future threats, and in carrying out risk assessments based on levels of threat to the whole bird community.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.1723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.1723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Australia, ItalyPublisher:Wiley Funded by:EC | ALPINEFRAGMENTATIONEC| ALPINEFRAGMENTATIONAnna R. Renwick; Dario Massimino; Stuart E. Newson; CHAMBERLAIN, Daniel Edward; James W. Pearce Higgins; Alison Johnston;handle: 2318/133367
AbstractAim Existing climate envelope models give an indication of broad scale shifts in distribution, but do not specifically provide information on likely future population changes useful for conservation prioritization and planning. We demonstrate how these techniques can be developed to model likely future changes in absolute density and population size as a result of climate change.Location Great Britain.Methods Generalized linear models were used to model breeding densities of two northerly‐ and two southerly‐distributed bird species as a function of climate and land use. Models were built using count data from extensive national bird monitoring data and incorporated detectability to estimate absolute abundance. Projections of likely future changes in the distribution and abundance of these species were made by applying these models to projections of future climate change under two emissions scenarios.Results Models described current spatial variation in abundance for three of the four species and produced modelled current estimates of national populations that were similar to previously published estimates for all species. Climate change was projected to result in national population declines in the two northerly‐distributed species, with declines for Eurasian curlewNumenius arquataprojected to be particularly severe. Conversely, the abundances of the two southerly distributed species were projected to increase nationally. Projected maps of future abundance may be used to identify priority areas for the future conservation of each species.Main conclusions The analytical methods provide a framework to make projections of impacts of climate change on species abundance, rather than simply projected range changes. Outputs may be summarized at any spatial scale, providing information to inform future conservation planning at national, regional and local scales. Results suggest that as a consequence of climate change, northerly distributed bird species in Great Britain are likely to become an increasingly high conservation priority within the UK.
Diversity and Distri... arrow_drop_down Diversity and DistributionsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1472-4642.2011.00827.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Diversity and Distri... arrow_drop_down Diversity and DistributionsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.14...Other literature typeData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1472-4642.2011.00827.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Brambilla M.; Scridel D.; Bazzi G.; Ilahiane L.; Iemma A.; Pedrini P.; Bassi E.; Bionda R.; Marchesi L.; Genero F.; Teufelbauer N.; Probst R.; Vrezec A.; Kmecl P.; Mihelic T.; Bogliani G.; Schmid H.; Assandri G.; Pontarini R.; Braunisch V.; Arlettaz R.; Chamberlain D.;doi: 10.1111/gcb.14953 , 10.48350/154150
pmid: 31804736
handle: 11368/3063018 , 2434/906218 , 2318/1727539 , 11579/174245
doi: 10.1111/gcb.14953 , 10.48350/154150
pmid: 31804736
handle: 11368/3063018 , 2434/906218 , 2318/1727539 , 11579/174245
AbstractInterspecific interactions are crucial in determining species occurrence and community assembly. Understanding these interactions is thus essential for correctly predicting species' responses to climate change. We focussed on an avian forest guild of four hole‐nesting species with differing sensitivities to climate that show a range of well‐understood reciprocal interactions, including facilitation, competition and predation. We modelled the potential distributions of black woodpecker and boreal, tawny and Ural owl, and tested whether the spatial patterns of the more widespread species (excluding Ural owl) were shaped by interspecific interactions. We then modelled the potential future distributions of all four species, evaluating how the predicted changes will alter the overlap between the species' ranges, and hence the spatial outcomes of interactions. Forest cover/type and climate were important determinants of habitat suitability for all species. Field data analysed with N‐mixture models revealed effects of interspecific interactions on current species abundance, especially in boreal owl (positive effects of black woodpecker, negative effects of tawny owl). Climate change will impact the assemblage both at species and guild levels, as the potential area of range overlap, relevant for species interactions, will change in both proportion and extent in the future. Boreal owl, the most climate‐sensitive species in the guild, will retreat, and the range overlap with its main predator, tawny owl, will increase in the remaining suitable area: climate change will thus impact on boreal owl both directly and indirectly. Climate change will cause the geographical alteration or disruption of species interaction networks, with different consequences for the species belonging to the guild and a likely spatial increase of competition and/or intraguild predation. Our work shows significant interactions and important potential changes in the overlap of areas suitable for the interacting species, which reinforce the importance of including relevant biotic interactions in predictive climate change models for increasing forecast accuracy.
Archivio Istituziona... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi del Piemonte Orientale: CINECA IRISArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 ItalyPublisher:Springer Science and Business Media LLC Nervo, Beatrice; Roggero, Angela; Chamberlain, Dan; Caprio, Enrico; Rolando, Antonio; Palestrini, Claudia;AbstractBackgroundIncreasing temperatures and changes in precipitation patterns threaten the existence of many organisms. It is therefore informative to identify the functional traits that underlie differences in desiccation resistance to understand the response of different species to changes in water availability resulting from climate change. We used adult dung beetles as model species due to their importance to ecosystem services. We investigated: (i) the effect of physiological (water loss rate, water loss tolerance, body water content), morphological (body mass) and ecological (nesting behaviour) traits on desiccation resistance; (ii) the role of phylogenetic relatedness in the above associations; and, (iii) whether relatively large or small individuals within a species have similar desiccation resistance and whether these responses are consistent across species.ResultsDesiccation resistance decreased with increasing water loss rate and increased with increasing water loss tolerance (i.e. proportion of initial water content lost at the time of death). A lack of consistent correlation between these traits due to phylogenetic relatedness suggests that the relationship is not determined by a shared evolutionary history. The advantage of a large body size in favouring desiccation resistance depended on the nesting behaviour of the dung beetles. In rollers (one species), large body sizes increased desiccation resistance, while in tunnelers and dwellers, desiccation resistance seemed not to be dependent on body mass. The phylogenetic correlation between desiccation resistance and nesting strategies was significant. Within each species, large individuals showed greater resistance to desiccation, and these responses were consistent across species.ConclusionsResistance to desiccation was explained mainly by the dung beetles’ ability to reduce water loss rate (avoidance) and to tolerate water loss (tolerance). A reduction in water availability may impose a selection pressure on body size that varies based on nesting strategies, even though these responses may be phylogenetically constrained. Changes in water availability are more likely to affect dweller species, and hence the ecosystem services they provide.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40850-021-00089-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40850-021-00089-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2007 United KingdomPublisher:Royal Society of Chemistry (RSC) Watt, A.D.; Bradshaw, R.H.W.; Young, J.; Alard, D.; Bolger, T.; Chamberlain, D.; Fernández-González, F.; Fuller, R.; Gurrea, P.; Henle, K.; Johnson, R.; Korsós, Z.; Lavelle, P.; Niemelä, J.; Norwicki, P.; Rebane, M.; Scheidegger, C.; Sousa, J.P.; Van Swaay, C.; Vanbergen, A.;The loss of biodiversity in Europe and elsewhere has been highlighted for several decades.1–5 The scale and potential consequences of this loss has led to action to combat it, notably the Convention on Biological Diversity (CBD). Realising that current policies and action taken to conserve biodivers...
NERC Open Research A... arrow_drop_down NERC Open Research ArchivePart of book or chapter of book . 2007Data sources: NERC Open Research Archivehttps://doi.org/10.1039/978184...Part of book or chapter of book . 2007 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/9781847557650-00135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research ArchivePart of book or chapter of book . 2007Data sources: NERC Open Research Archivehttps://doi.org/10.1039/978184...Part of book or chapter of book . 2007 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/9781847557650-00135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Switzerland, ItalyPublisher:Cambridge University Press (CUP) Brambilla M.; Resano-Mayor J.; Arlettaz R.; Bettega C.; Binggeli A.; Bogliani G.; Braunisch V.; Celada C.; Chamberlain D.; Carricaburu J. C.; Delgado M. D. M.; Fontanilles P.; Kmecl P.; Korner F.; Lindner R.; Pedrini P.; Pohacker J.; Rubinic B.; Schano C.; Scridel D.; Strinella E.; Teufelbauer N.; De Gabriel Hernando M.;handle: 11368/3062958 , 2434/906236
SummaryThe White-winged Snowfinch Montifringilla nivalis nivalis is assumed to be highly threatened by climate change, but this high elevation species has been little studied and the current breeding distribution is accurately known only for a minor portion of its range. Here, we provide a detailed and spatially explicit identification of the potentially suitable breeding areas for the Snowfinch. We modelled suitable areas in Europe and compared them with the currently known distribution. We built a distribution model using 14,574 records obtained during the breeding period that integrated climatic, topographic and land-cover variables, working at a 2-km spatial resolution with MaxEnt. The model performed well and was very robust; average annual temperature was the most important occurrence predictor (optimum between c.-3°C and 0°; unsuitable conditions below -10° and above 5°). The current European breeding range estimated by BirdLife International was almost three times greater than that classified as potentially suitable by our model. Discrepancies between our model and the distribution estimated by BirdLife International were particularly evident in eastern Europe, where the species is poorly monitored. Southern populations are likely more isolated and at major risk because of global warming. These differences have important implications for the supposed national responsibility for conservation of the species and highlight the need for new investigations on the species in the eastern part of its European range.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2020Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bird Conservation InternationalArticle . 2020 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0959270920000027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2020Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Bird Conservation InternationalArticle . 2020 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s0959270920000027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu