- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Fangning Zhang; Jacqueline Batley;pmid: 32029361
Modern agriculture is currently facing challenges from a burgeoning population and changing climate, which requires improved crops with adaptation to climate and elite yield and quality traits. While there is a breeding bottleneck caused by intensive selection, gene banks containing conserved wild relatives and landraces can be used as breeding resources. However, with limited genetic information available on these wild relatives, the application has been hindered. With the development of both genomics and bioinformatics techniques, it is now easier to identify the genetic variation in wild species, which can be utilized for the introgression of elite traits. These wild species can therefore play an important role in food security and breeding sustainability.
Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2019.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2019.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Authorea, Inc. Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200100201Antoine J. P. Minne; Sofie Vranken; David Wheeler; Georgina Wood; Jacqueline Batley; Thomas Wernberg; Melinda A. Coleman;ABSTRACTOngoing and predicted range loss of kelp forests in response to climatic stressors is pressing marine managers to look into the adaptive capacity of populations to inform conservation strategies. Characterising how adaptive genetic diversity and structure relate to present and future environmental variation represents an emerging approach to quantifying kelp vulnerability to environmental change and identifying populations with genotypes that potentially confer an adaptive advantage in future ocean conditions. The dominant Australian kelp, Ecklonia radiata, was genotyped from 10 locations spanning 2000 km of coastline and a 9.5°C average temperature gradient along the east coast of Australia, a global warming hotspot. ddRAD sequencing generated 10,700 high‐quality single nucleotide polymorphisms (SNPs) and characterized levels of neutral and adaptive genomic diversity and structure. The adaptive dataset, reflecting portions of the genome putatively under selection, was used to infer genomic vulnerability by 2050 under the RCP 8.5 scenario. There was strong neutral genetic differentiation between Australia mainland and Tasmanian populations, but only weak genetic structure among mainland populations within the main path of the East Australian Current. Genetic diversity was highest in the center of the range and lowest in the warm‐edge population. The adaptive SNP candidates revealed similar genetic structure patterns, with a spread of adaptive alleles across most warm (northern) populations. The lowest, but most unique, adaptive genetic diversity values were found in both warm and cool population edges, suggesting local adaptation but low evolutionary potential. Critically, genomic vulnerability modeling identified high levels of vulnerability to future environmental conditions in Tasmanian populations. Populations of kelp at range edges are unlikely to adapt and keep pace with predicted climate change. Ensuring the persistence of these kelp forests, by boosting resilience to climate change, may require active management strategies with assisted adaptation in warm‐edge (northern) populations and assisted gene flow in cool‐edge (Tasmania) populations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.172979324.43406902/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.172979324.43406902/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Nur Shuhadah Mohd Saad; Ting Xiang Neik; William J.W. Thomas; Junrey C. Amas; Aldrin Y. Cantila; Ryan J. Craig; David Edwards; Jacqueline Batley;pmid: 35489163
Climate change and exponential population growth are exposing an immediate need for developing future crops that are highly resilient and adaptable to changing environments to maintain global food security in the next decade. Rigorous selection from long domestication history has rendered cultivated crops genetically disadvantaged, raising concerns in their ability to adapt to these new challenges and limiting their usefulness in breeding programmes. As a result, future crop improvement efforts must rely on integrating various genomic strategies ranging from high-throughput sequencing to machine learning, in order to exploit germplasm diversity and overcome bottlenecks created by domestication, expansive multi-dimensional phenotypes, arduous breeding processes, complex traits and big data.
Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2022.102220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2022.102220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Funded by:ARC | Mapping recombination blo..., ARC | Developing technology for..., ARC | Linkage Projects - Grant ... +6 projectsARC| Mapping recombination blocks in Brassica ,ARC| Developing technology for the cost effective de novo sequencing and analysis of complex genomes ,ARC| Linkage Projects - Grant ID: LP140100537 ,ARC| Linkage Projects - Grant ID: LP130100061 ,ARC| Characterising genetic variation in Brassica napus ,ARC| Linkage Projects - Grant ID: LP130100925 ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE140100061 ,ARC| Next generation metagenomics ,ARC| Co-evolution of the host pathogen interaction between Leptosphaeria maculans and Brassica speciesAuthors: Jacqueline Batley; David Edwards;pmid: 26926905
The changing climate and growing global population will increase pressure on our ability to produce sufficient food. The breeding of novel crops and the adaptation of current crops to the new environment are required to ensure continued food production. Advances in genomics offer the potential to accelerate the genomics based breeding of crop plants. However, relating genomic data to climate related agronomic traits for use in breeding remains a huge challenge, and one which will require coordination of diverse skills and expertise. Bioinformatics, when combined with genomics has the potential to help maintain food security in the face of climate change through the accelerated production of climate ready crops.
Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2016.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2016.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP160100114Sofie Vranken; Anita A. Severn-Ellis; David Edwards; Philipp E. Bayer; David A. Wheeler; Armin Scheben; Armin Scheben; Thomas Wernberg; Jacqueline Batley; Melinda A. Coleman; Melinda A. Coleman;doi: 10.1111/mec.15993
pmid: 34018645
AbstractClimate change is increasingly impacting ecosystems globally. Understanding adaptive genetic diversity and whether it will keep pace with projected climatic change is necessary to assess species’ vulnerability and design efficient mitigation strategies such as assisted adaptation. Kelp forests are the foundations of temperate reefs globally but are declining in many regions due to climate stress. A lack of knowledge of kelp's adaptive genetic diversity hinders assessment of vulnerability under extant and future climates. Using 4245 single nucleotide polymorphisms (SNPs), we characterized patterns of neutral and putative adaptive genetic diversity for the dominant kelp in the southern hemisphere (Ecklonia radiata) from ~1000 km of coastline off Western Australia. Strong population structure and isolation‐by‐distance was underpinned by significant signatures of selection related to temperature and light. Gradient forest analysis of temperature‐linked SNPs under selection revealed a strong association with mean annual temperature range, suggesting adaptation to local thermal environments. Critically, modelling revealed that predicted climate‐mediated temperature changes will probably result in high genomic vulnerability via a mismatch between current and future predicted genotype–environment relationships such that kelp forests off Western Australia will need to significantly adapt to keep pace with projected climate change. Proactive management techniques such as assisted adaptation to boost resilience may be required to secure the future of these kelp forests and the immense ecological and economic values they support.
Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.15993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.15993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 Italy, United States, France, India, France, Australia, India, United StatesPublisher:Wiley Roberto Tuberosa; Robert J Henry; Masahiro Yano; Anthony E. Hall; Francis C. Ogbonnaya; Athole H. Marshall; Kiyosumi Hori; Leland J. Cseke; Michael Abberton; Michael W. Humphreys; Stephen Hughes; Paul Gepts; John A. Bryant; James Cockram; Rodomiro Ortiz; Hongwei Cai; Rajeev K. Varshney; Rajeev K. Varshney; David A. Lightfoot; Antonio Costa de Oliveira; Hannes Dempewolf; Jacqueline Batley; Jacqueline Batley; Andy Greenland; David Edwards; Glen Thomas Howe; Babu Valliyodan; Sean Mayes; Ciro de Pace; Henry T. Nguyen; Andrew H. Paterson; Alison R. Bentley;SummaryAgriculture is now facing the ‘perfect storm’ of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic‐assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.
Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/88v1n59vData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/73009Data sources: Bielefeld Academic Search Engine (BASE)Plant Biotechnology JournalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pbi.12467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 214 citations 214 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/88v1n59vData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/73009Data sources: Bielefeld Academic Search Engine (BASE)Plant Biotechnology JournalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pbi.12467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Linkage Projects - Grant ..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran...ARC| Linkage Projects - Grant ID: LP160100030 ,ARC| Discovery Projects - Grant ID: DP160104497 ,ARC| Discovery Projects - Grant ID: DP200100762Jacob I. Marsh; Haifei Hu; Mitchell Gill; Jacqueline Batley; David Edwards;pmid: 33852055
Safeguarding crop yields in a changing climate requires bioinformatics advances in harnessing data from vast phenomics and genomics datasets to translate research findings into climate smart crops in the field. Climate change and an additional 3 billion mouths to feed by 2050 raise serious concerns over global food security. Crop breeding and land management strategies will need to evolve to maximize the utilization of finite resources in coming years. High-throughput phenotyping and genomics technologies are providing researchers with the information required to guide and inform the breeding of climate smart crops adapted to the environment. Bioinformatics has a fundamental role to play in integrating and exploiting this fast accumulating wealth of data, through association studies to detect genomic targets underlying key adaptive climate-resilient traits. These data provide tools for breeders to tailor crops to their environment and can be introduced using advanced selection or genome editing methods. To effectively translate research into the field, genomic and phenomic information will need to be integrated into comprehensive clade-specific databases and platforms alongside accessible tools that can be used by breeders to inform the selection of climate adaptive traits. Here we discuss the role of bioinformatics in extracting, analysing, integrating and managing genomic and phenomic data to improve climate resilience in crops, including current, emerging and potential approaches, applications and bottlenecks in the research and breeding pipeline.
Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-021-03820-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-021-03820-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 United Kingdom, AustraliaPublisher:Wiley Batley, J.; Edwards, K. J.; Barker, J. H. A.; Dawson, K. J.; Wiltshire, C. W.; Glen, D. M.; Karp, A.;pmid: 15271214
Abstract Phyllodecta (=Phratora) vulgatissima and P. vitellinae (Coleoptera: Chrysomelidae) are important pests of willows and poplars. Their differences in host species preference may provide a non‐chemical control strategy for pest control. However, little is known about population structure with respect to hosts, regions or seasons. Using five microsatellites, 850 P. vulgatissima and 1100 P. vitellinae individuals, comprising 17 and 22 UK samples, respectively, were genotyped. High diversity was observed at all loci. Migrant numbers exchanged per generation (Nm) were high (2.1–12.6 for P. vulgatissima and 0.9–12.2 for P. vitellinae), suggesting high genetic exchange between samples. Estimates of population differentiation (FST) and analyses of the data using Bayesian methods (Partition and Structure) showed little evidence of subdivision in relation to geography, sampling time or host.
Rothamsted Repositor... arrow_drop_down Insect Molecular BiologyArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.0962-1075.2004.00501.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert Rothamsted Repositor... arrow_drop_down Insect Molecular BiologyArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.0962-1075.2004.00501.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 FrancePublisher:Frontiers Media SA Ting Xiang Neik; Kadambot H. M. Siddique; Sean Mayes; David Edwards; David Edwards; David Edwards; Jacqueline Batley; Jacqueline Batley; Tafadzwanashe Mabhaudhi; Tafadzwanashe Mabhaudhi; Tafadzwanashe Mabhaudhi; Beng Kah Song; Festo Massawe; Festo Massawe;handle: 10568/129767
The recent Russia–Ukraine conflict has raised significant concerns about global food security, leaving many countries with restricted access to imported staple food crops, particularly wheat and sunflower oil, sending food prices soaring with other adverse consequences in the food supply chain. This detrimental effect is particularly prominent for low-income countries relying on grain imports, with record-high food prices and inflation affecting their livelihoods. This review discusses the role of Russia and Ukraine in the global food system and the impact of the Russia–Ukraine conflict on food security. It also highlights how diversifying four areas of agrifood systems—markets, production, crops, and technology can contribute to achieving food supply chain resilience for future food security and sustainability.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129767Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Sustainable Food SystemsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fsufs.2023.1124640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129767Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Sustainable Food SystemsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fsufs.2023.1124640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Fangning Zhang; Jacqueline Batley;pmid: 32029361
Modern agriculture is currently facing challenges from a burgeoning population and changing climate, which requires improved crops with adaptation to climate and elite yield and quality traits. While there is a breeding bottleneck caused by intensive selection, gene banks containing conserved wild relatives and landraces can be used as breeding resources. However, with limited genetic information available on these wild relatives, the application has been hindered. With the development of both genomics and bioinformatics techniques, it is now easier to identify the genetic variation in wild species, which can be utilized for the introgression of elite traits. These wild species can therefore play an important role in food security and breeding sustainability.
Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2019.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2019.12.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Authorea, Inc. Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200100201Antoine J. P. Minne; Sofie Vranken; David Wheeler; Georgina Wood; Jacqueline Batley; Thomas Wernberg; Melinda A. Coleman;ABSTRACTOngoing and predicted range loss of kelp forests in response to climatic stressors is pressing marine managers to look into the adaptive capacity of populations to inform conservation strategies. Characterising how adaptive genetic diversity and structure relate to present and future environmental variation represents an emerging approach to quantifying kelp vulnerability to environmental change and identifying populations with genotypes that potentially confer an adaptive advantage in future ocean conditions. The dominant Australian kelp, Ecklonia radiata, was genotyped from 10 locations spanning 2000 km of coastline and a 9.5°C average temperature gradient along the east coast of Australia, a global warming hotspot. ddRAD sequencing generated 10,700 high‐quality single nucleotide polymorphisms (SNPs) and characterized levels of neutral and adaptive genomic diversity and structure. The adaptive dataset, reflecting portions of the genome putatively under selection, was used to infer genomic vulnerability by 2050 under the RCP 8.5 scenario. There was strong neutral genetic differentiation between Australia mainland and Tasmanian populations, but only weak genetic structure among mainland populations within the main path of the East Australian Current. Genetic diversity was highest in the center of the range and lowest in the warm‐edge population. The adaptive SNP candidates revealed similar genetic structure patterns, with a spread of adaptive alleles across most warm (northern) populations. The lowest, but most unique, adaptive genetic diversity values were found in both warm and cool population edges, suggesting local adaptation but low evolutionary potential. Critically, genomic vulnerability modeling identified high levels of vulnerability to future environmental conditions in Tasmanian populations. Populations of kelp at range edges are unlikely to adapt and keep pace with predicted climate change. Ensuring the persistence of these kelp forests, by boosting resilience to climate change, may require active management strategies with assisted adaptation in warm‐edge (northern) populations and assisted gene flow in cool‐edge (Tasmania) populations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.172979324.43406902/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/au.172979324.43406902/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Nur Shuhadah Mohd Saad; Ting Xiang Neik; William J.W. Thomas; Junrey C. Amas; Aldrin Y. Cantila; Ryan J. Craig; David Edwards; Jacqueline Batley;pmid: 35489163
Climate change and exponential population growth are exposing an immediate need for developing future crops that are highly resilient and adaptable to changing environments to maintain global food security in the next decade. Rigorous selection from long domestication history has rendered cultivated crops genetically disadvantaged, raising concerns in their ability to adapt to these new challenges and limiting their usefulness in breeding programmes. As a result, future crop improvement efforts must rely on integrating various genomic strategies ranging from high-throughput sequencing to machine learning, in order to exploit germplasm diversity and overcome bottlenecks created by domestication, expansive multi-dimensional phenotypes, arduous breeding processes, complex traits and big data.
Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2022.102220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2022.102220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Funded by:ARC | Mapping recombination blo..., ARC | Developing technology for..., ARC | Linkage Projects - Grant ... +6 projectsARC| Mapping recombination blocks in Brassica ,ARC| Developing technology for the cost effective de novo sequencing and analysis of complex genomes ,ARC| Linkage Projects - Grant ID: LP140100537 ,ARC| Linkage Projects - Grant ID: LP130100061 ,ARC| Characterising genetic variation in Brassica napus ,ARC| Linkage Projects - Grant ID: LP130100925 ,ARC| Linkage Infrastructure, Equipment and Facilities - Grant ID: LE140100061 ,ARC| Next generation metagenomics ,ARC| Co-evolution of the host pathogen interaction between Leptosphaeria maculans and Brassica speciesAuthors: Jacqueline Batley; David Edwards;pmid: 26926905
The changing climate and growing global population will increase pressure on our ability to produce sufficient food. The breeding of novel crops and the adaptation of current crops to the new environment are required to ensure continued food production. Advances in genomics offer the potential to accelerate the genomics based breeding of crop plants. However, relating genomic data to climate related agronomic traits for use in breeding remains a huge challenge, and one which will require coordination of diverse skills and expertise. Bioinformatics, when combined with genomics has the potential to help maintain food security in the face of climate change through the accelerated production of climate ready crops.
Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2016.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in P... arrow_drop_down Current Opinion in Plant BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbi.2016.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP160100114Sofie Vranken; Anita A. Severn-Ellis; David Edwards; Philipp E. Bayer; David A. Wheeler; Armin Scheben; Armin Scheben; Thomas Wernberg; Jacqueline Batley; Melinda A. Coleman; Melinda A. Coleman;doi: 10.1111/mec.15993
pmid: 34018645
AbstractClimate change is increasingly impacting ecosystems globally. Understanding adaptive genetic diversity and whether it will keep pace with projected climatic change is necessary to assess species’ vulnerability and design efficient mitigation strategies such as assisted adaptation. Kelp forests are the foundations of temperate reefs globally but are declining in many regions due to climate stress. A lack of knowledge of kelp's adaptive genetic diversity hinders assessment of vulnerability under extant and future climates. Using 4245 single nucleotide polymorphisms (SNPs), we characterized patterns of neutral and putative adaptive genetic diversity for the dominant kelp in the southern hemisphere (Ecklonia radiata) from ~1000 km of coastline off Western Australia. Strong population structure and isolation‐by‐distance was underpinned by significant signatures of selection related to temperature and light. Gradient forest analysis of temperature‐linked SNPs under selection revealed a strong association with mean annual temperature range, suggesting adaptation to local thermal environments. Critically, modelling revealed that predicted climate‐mediated temperature changes will probably result in high genomic vulnerability via a mismatch between current and future predicted genotype–environment relationships such that kelp forests off Western Australia will need to significantly adapt to keep pace with projected climate change. Proactive management techniques such as assisted adaptation to boost resilience may be required to secure the future of these kelp forests and the immense ecological and economic values they support.
Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.15993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.15993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 Italy, United States, France, India, France, Australia, India, United StatesPublisher:Wiley Roberto Tuberosa; Robert J Henry; Masahiro Yano; Anthony E. Hall; Francis C. Ogbonnaya; Athole H. Marshall; Kiyosumi Hori; Leland J. Cseke; Michael Abberton; Michael W. Humphreys; Stephen Hughes; Paul Gepts; John A. Bryant; James Cockram; Rodomiro Ortiz; Hongwei Cai; Rajeev K. Varshney; Rajeev K. Varshney; David A. Lightfoot; Antonio Costa de Oliveira; Hannes Dempewolf; Jacqueline Batley; Jacqueline Batley; Andy Greenland; David Edwards; Glen Thomas Howe; Babu Valliyodan; Sean Mayes; Ciro de Pace; Henry T. Nguyen; Andrew H. Paterson; Alison R. Bentley;SummaryAgriculture is now facing the ‘perfect storm’ of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic‐assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.
Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/88v1n59vData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/73009Data sources: Bielefeld Academic Search Engine (BASE)Plant Biotechnology JournalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pbi.12467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 214 citations 214 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/88v1n59vData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/73009Data sources: Bielefeld Academic Search Engine (BASE)Plant Biotechnology JournalArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pbi.12467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Linkage Projects - Grant ..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran...ARC| Linkage Projects - Grant ID: LP160100030 ,ARC| Discovery Projects - Grant ID: DP160104497 ,ARC| Discovery Projects - Grant ID: DP200100762Jacob I. Marsh; Haifei Hu; Mitchell Gill; Jacqueline Batley; David Edwards;pmid: 33852055
Safeguarding crop yields in a changing climate requires bioinformatics advances in harnessing data from vast phenomics and genomics datasets to translate research findings into climate smart crops in the field. Climate change and an additional 3 billion mouths to feed by 2050 raise serious concerns over global food security. Crop breeding and land management strategies will need to evolve to maximize the utilization of finite resources in coming years. High-throughput phenotyping and genomics technologies are providing researchers with the information required to guide and inform the breeding of climate smart crops adapted to the environment. Bioinformatics has a fundamental role to play in integrating and exploiting this fast accumulating wealth of data, through association studies to detect genomic targets underlying key adaptive climate-resilient traits. These data provide tools for breeders to tailor crops to their environment and can be introduced using advanced selection or genome editing methods. To effectively translate research into the field, genomic and phenomic information will need to be integrated into comprehensive clade-specific databases and platforms alongside accessible tools that can be used by breeders to inform the selection of climate adaptive traits. Here we discuss the role of bioinformatics in extracting, analysing, integrating and managing genomic and phenomic data to improve climate resilience in crops, including current, emerging and potential approaches, applications and bottlenecks in the research and breeding pipeline.
Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-021-03820-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Theoretical and Appl... arrow_drop_down Theoretical and Applied GeneticsArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00122-021-03820-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 United Kingdom, AustraliaPublisher:Wiley Batley, J.; Edwards, K. J.; Barker, J. H. A.; Dawson, K. J.; Wiltshire, C. W.; Glen, D. M.; Karp, A.;pmid: 15271214
Abstract Phyllodecta (=Phratora) vulgatissima and P. vitellinae (Coleoptera: Chrysomelidae) are important pests of willows and poplars. Their differences in host species preference may provide a non‐chemical control strategy for pest control. However, little is known about population structure with respect to hosts, regions or seasons. Using five microsatellites, 850 P. vulgatissima and 1100 P. vitellinae individuals, comprising 17 and 22 UK samples, respectively, were genotyped. High diversity was observed at all loci. Migrant numbers exchanged per generation (Nm) were high (2.1–12.6 for P. vulgatissima and 0.9–12.2 for P. vitellinae), suggesting high genetic exchange between samples. Estimates of population differentiation (FST) and analyses of the data using Bayesian methods (Partition and Structure) showed little evidence of subdivision in relation to geography, sampling time or host.
Rothamsted Repositor... arrow_drop_down Insect Molecular BiologyArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.0962-1075.2004.00501.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert Rothamsted Repositor... arrow_drop_down Insect Molecular BiologyArticle . 2004 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.0962-1075.2004.00501.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 FrancePublisher:Frontiers Media SA Ting Xiang Neik; Kadambot H. M. Siddique; Sean Mayes; David Edwards; David Edwards; David Edwards; Jacqueline Batley; Jacqueline Batley; Tafadzwanashe Mabhaudhi; Tafadzwanashe Mabhaudhi; Tafadzwanashe Mabhaudhi; Beng Kah Song; Festo Massawe; Festo Massawe;handle: 10568/129767
The recent Russia–Ukraine conflict has raised significant concerns about global food security, leaving many countries with restricted access to imported staple food crops, particularly wheat and sunflower oil, sending food prices soaring with other adverse consequences in the food supply chain. This detrimental effect is particularly prominent for low-income countries relying on grain imports, with record-high food prices and inflation affecting their livelihoods. This review discusses the role of Russia and Ukraine in the global food system and the impact of the Russia–Ukraine conflict on food security. It also highlights how diversifying four areas of agrifood systems—markets, production, crops, and technology can contribute to achieving food supply chain resilience for future food security and sustainability.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129767Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Sustainable Food SystemsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fsufs.2023.1124640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129767Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Sustainable Food SystemsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fsufs.2023.1124640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu