- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021Embargo end date: 26 Jun 2023 Italy, GermanyPublisher:MDPI AG Smruti Manjunath; Madhura Yeligeti; Maria Fyta; Jannik Haas; Hans-Christian Gils;To assess the resilience of energy systems, i.e., the ability to recover after an unexpected shock, the system’s minimum state of service is a key input. Quantitative descriptions of such states are inherently elusive. The measures adopted by governments to contain COVID-19 have provided empirical data, which may serve as a proxy for such states of minimum service. Here, we systematize the impact of the adopted COVID-19 measures on the electricity demand. We classify the measures into three phases of increasing stringency, ranging from working from home to soft and full lockdowns, for four major electricity consuming countries of Europe. We use readily accessible data from the European Network of Transmission System Operators for Electricity as a basis. For each country and phase, we derive representative daily load profiles with hourly resolution obtained by k-medoids clustering. The analysis could unravel the influence of the different measures to the energy consumption and the differences among the four countries. It is observed that the daily peak load is considerably flattened and the total electricity consumption decreases by up to 30% under the circumstances brought about by the COVID-19 restrictions. These demand profiles are useful for the energy planning community, especially when designing future electricity systems with a focus on system resilience and a more digitalised society in terms of working from home.
OPUS - Publication ... arrow_drop_down OPUS - Publication Server of the University of StuttgartArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Online Publikationen der Universität StuttgartArticle . 2021License: CC BYData sources: Online Publikationen der Universität Stuttgartadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6070076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert OPUS - Publication ... arrow_drop_down OPUS - Publication Server of the University of StuttgartArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Online Publikationen der Universität StuttgartArticle . 2021License: CC BYData sources: Online Publikationen der Universität Stuttgartadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6070076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2003Embargo end date: 01 Jan 2006 CyprusPublisher:American Physical Society (APS) Funded by:GSRIGSRIAuthors: Fyta, Maria G.; Remediakis, Ioannis N.; Kelires, Pantelis C.;handle: 20.500.14279/1499
Monte Carlo simulations, supplemented by ab initio calculations, shed light into the energetics and thermodynamic stability of nanostructured amorphous carbon. The interaction of the embedded nanocrystals with the host amorphous matrix is shown to determine in a large degree the stability and the relative energy differences among carbon phases. Diamonds are stable structures in matrices with sp^3 fraction over 60%. Schwarzites are stable in low-coordinated networks. Other sp^2-bonded structures are metastable. 11 pages, 7 figures
http://arxiv.org/pdf... arrow_drop_down https://doi.org/10.1103/physre...Article . 2003 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2006License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevb.67.035423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://doi.org/10.1103/physre...Article . 2003 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2006License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevb.67.035423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021Embargo end date: 26 Jun 2023 Italy, GermanyPublisher:MDPI AG Smruti Manjunath; Madhura Yeligeti; Maria Fyta; Jannik Haas; Hans-Christian Gils;To assess the resilience of energy systems, i.e., the ability to recover after an unexpected shock, the system’s minimum state of service is a key input. Quantitative descriptions of such states are inherently elusive. The measures adopted by governments to contain COVID-19 have provided empirical data, which may serve as a proxy for such states of minimum service. Here, we systematize the impact of the adopted COVID-19 measures on the electricity demand. We classify the measures into three phases of increasing stringency, ranging from working from home to soft and full lockdowns, for four major electricity consuming countries of Europe. We use readily accessible data from the European Network of Transmission System Operators for Electricity as a basis. For each country and phase, we derive representative daily load profiles with hourly resolution obtained by k-medoids clustering. The analysis could unravel the influence of the different measures to the energy consumption and the differences among the four countries. It is observed that the daily peak load is considerably flattened and the total electricity consumption decreases by up to 30% under the circumstances brought about by the COVID-19 restrictions. These demand profiles are useful for the energy planning community, especially when designing future electricity systems with a focus on system resilience and a more digitalised society in terms of working from home.
OPUS - Publication ... arrow_drop_down OPUS - Publication Server of the University of StuttgartArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Online Publikationen der Universität StuttgartArticle . 2021License: CC BYData sources: Online Publikationen der Universität Stuttgartadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6070076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert OPUS - Publication ... arrow_drop_down OPUS - Publication Server of the University of StuttgartArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Online Publikationen der Universität StuttgartArticle . 2021License: CC BYData sources: Online Publikationen der Universität Stuttgartadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6070076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2003Embargo end date: 01 Jan 2006 CyprusPublisher:American Physical Society (APS) Funded by:GSRIGSRIAuthors: Fyta, Maria G.; Remediakis, Ioannis N.; Kelires, Pantelis C.;handle: 20.500.14279/1499
Monte Carlo simulations, supplemented by ab initio calculations, shed light into the energetics and thermodynamic stability of nanostructured amorphous carbon. The interaction of the embedded nanocrystals with the host amorphous matrix is shown to determine in a large degree the stability and the relative energy differences among carbon phases. Diamonds are stable structures in matrices with sp^3 fraction over 60%. Schwarzites are stable in low-coordinated networks. Other sp^2-bonded structures are metastable. 11 pages, 7 figures
http://arxiv.org/pdf... arrow_drop_down https://doi.org/10.1103/physre...Article . 2003 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2006License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevb.67.035423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://doi.org/10.1103/physre...Article . 2003 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2006License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevb.67.035423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu