- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Małgorzata Kajda-Szcześniak; Monika Czop;doi: 10.3390/en15041516
The article analyzes the thermal degradation in the inert and oxidative atmosphere of waste vinyl panels, the main component of which is PVC. Both pyrolysis and incineration of plastic waste are difficult, complex and multifaceted processes due to several physical and chemical phenomena occurring during their performance. The coupled TG-MS (thermogravimetry-mass spectrometry) analysis combined with the Fourier transform infrared spectrometry (TG-FTIR) analysis was used to identify the decomposition mechanisms of waste vinyl panels. Thermogravimetric tests were carried out for two heating rates of 5 and 20 K/min in the temperature range of 40–1000 °C, mass losses were determined, and products resulting from thermal degradation were identified. It was found that the individual components decompose at different temperatures depending on the heating rate and the choice of an inert or oxidative atmosphere. Vinyl floor panels were treated in terms of secondary raw material, which, in the light of the circular economy, may constitute a potential energy or chemical resource.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1516/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1516/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Małgorzata Kajda-Szcześniak; Monika Czop;doi: 10.3390/en15041516
The article analyzes the thermal degradation in the inert and oxidative atmosphere of waste vinyl panels, the main component of which is PVC. Both pyrolysis and incineration of plastic waste are difficult, complex and multifaceted processes due to several physical and chemical phenomena occurring during their performance. The coupled TG-MS (thermogravimetry-mass spectrometry) analysis combined with the Fourier transform infrared spectrometry (TG-FTIR) analysis was used to identify the decomposition mechanisms of waste vinyl panels. Thermogravimetric tests were carried out for two heating rates of 5 and 20 K/min in the temperature range of 40–1000 °C, mass losses were determined, and products resulting from thermal degradation were identified. It was found that the individual components decompose at different temperatures depending on the heating rate and the choice of an inert or oxidative atmosphere. Vinyl floor panels were treated in terms of secondary raw material, which, in the light of the circular economy, may constitute a potential energy or chemical resource.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1516/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1516/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Monika Czop; Beata Łaźniewska-Piekarczyk; Małgorzata Kajda-Szcześniak;doi: 10.3390/en15239050
Fly ash generated in the process of combustion of municipal waste is classified as hazardous waste. Its management today has become a significant problem. One of the methods of safe management of such ash may be using it for the production of concrete as a partial replacement for cement. Using immobilization, the number of hazardous compounds could be limited so that the obtained new material would be safe for the natural environment. Recovery of byproducts—in this case, fly ash—complies with the business models applied in the production cycle in the circular economy model. Such a solution may result in saving energy, limiting CO2 emissions, reducing the use of natural resources, and management of dangerous waste. It should be added that concretes with the addition of hazardous waste would be used for industrial purposes according to the binding legal regulations. This article presents the influence of the addition of fly ash on the selected mechanical properties of concrete. Fly ash from the incineration of municipal waste was used as a partial replacement of CEM I concrete at amounts of 4%, 8%, and 18% of its mass. The compressive strength and flexural strength of such concretes were tested after 28 days of concrete curing. This article also presents the tests of the leachability of contaminants from fly ash and concretes produced with Portland cement CEM I. The test results confirm that immobilization is an effective process that limits the amount of contamination in the water extract. Zinc, lead, and chrome were almost completely immobilized by the C-S-H (calcium silicate hydrate) concrete phase, with their immobilization degree exceeding 99%. Chloride content also underwent immobilization at a similar level of 99%. The sulfates were immobilized at the level of 96%. The subject matter discussed in this article is essential because, to protect the natural environment and, thus, reduce the use of natural resources, it is increasingly necessary to reuse raw materials—not natural, but recycled from the industry. Waste often contains hazardous compounds. A proposal for their safe disposal is their immobilization in a cement matrix. An important aspect is reducing leachability from concrete as much as possible, e.g., using nanomaterials. The effectiveness of reducing the leachability of hazardous compounds with the proposed method was checked in this study.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/9050/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15239050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/9050/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15239050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Monika Czop; Beata Łaźniewska-Piekarczyk; Małgorzata Kajda-Szcześniak;doi: 10.3390/en15239050
Fly ash generated in the process of combustion of municipal waste is classified as hazardous waste. Its management today has become a significant problem. One of the methods of safe management of such ash may be using it for the production of concrete as a partial replacement for cement. Using immobilization, the number of hazardous compounds could be limited so that the obtained new material would be safe for the natural environment. Recovery of byproducts—in this case, fly ash—complies with the business models applied in the production cycle in the circular economy model. Such a solution may result in saving energy, limiting CO2 emissions, reducing the use of natural resources, and management of dangerous waste. It should be added that concretes with the addition of hazardous waste would be used for industrial purposes according to the binding legal regulations. This article presents the influence of the addition of fly ash on the selected mechanical properties of concrete. Fly ash from the incineration of municipal waste was used as a partial replacement of CEM I concrete at amounts of 4%, 8%, and 18% of its mass. The compressive strength and flexural strength of such concretes were tested after 28 days of concrete curing. This article also presents the tests of the leachability of contaminants from fly ash and concretes produced with Portland cement CEM I. The test results confirm that immobilization is an effective process that limits the amount of contamination in the water extract. Zinc, lead, and chrome were almost completely immobilized by the C-S-H (calcium silicate hydrate) concrete phase, with their immobilization degree exceeding 99%. Chloride content also underwent immobilization at a similar level of 99%. The sulfates were immobilized at the level of 96%. The subject matter discussed in this article is essential because, to protect the natural environment and, thus, reduce the use of natural resources, it is increasingly necessary to reuse raw materials—not natural, but recycled from the industry. Waste often contains hazardous compounds. A proposal for their safe disposal is their immobilization in a cement matrix. An important aspect is reducing leachability from concrete as much as possible, e.g., using nanomaterials. The effectiveness of reducing the leachability of hazardous compounds with the proposed method was checked in this study.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/9050/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15239050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/9050/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15239050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Beata Łaźniewska-Piekarczyk; Dominik Smyczek; Monika Czop;doi: 10.3390/app13084895
Innovative building materials should also be pro-environmental. This article discusses the environmental footprint of geopolymer and cement-based mortars. It describes the methodology for preparing geopolymer and cement mortars using mineral wool waste. The phenol–formaldehyde resin used in mineral wool is a source of phenol and formaldehyde emissions to the environment. The prepared mortar samples were subjected to durability tests to assess the correlation between the amount of mineral wool and the flexural and compressive strength of the samples. The key element of the paper is to test whether immobilisation of mineral wool in the geopolymer will reduce leaching of phenol and formaldehyde into the environment. The results revealed that cements prepared with mineral wool showed higher compressive strength, whereas geopolymer samples had better flexural strength. The study also proved that immobilisation of the wool in the geopolymer reduces phenol and formaldehyde leaching significantly.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4895/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4895/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Beata Łaźniewska-Piekarczyk; Dominik Smyczek; Monika Czop;doi: 10.3390/app13084895
Innovative building materials should also be pro-environmental. This article discusses the environmental footprint of geopolymer and cement-based mortars. It describes the methodology for preparing geopolymer and cement mortars using mineral wool waste. The phenol–formaldehyde resin used in mineral wool is a source of phenol and formaldehyde emissions to the environment. The prepared mortar samples were subjected to durability tests to assess the correlation between the amount of mineral wool and the flexural and compressive strength of the samples. The key element of the paper is to test whether immobilisation of mineral wool in the geopolymer will reduce leaching of phenol and formaldehyde into the environment. The results revealed that cements prepared with mineral wool showed higher compressive strength, whereas geopolymer samples had better flexural strength. The study also proved that immobilisation of the wool in the geopolymer reduces phenol and formaldehyde leaching significantly.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4895/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4895/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Monika Czop; Beata Łaźniewska-Piekarczyk;doi: 10.3390/su11195384
The aim of this work was to check the possibility of using a concrete matrix to immobilize contaminants from ash (fly and bottom) originating from the combustion of solid municipal waste. This work presents tests of ash from a Polish incineration plant. Nowadays, the management of ash poses a big problem with respect to the high concentration of contaminants that constitutes an environmental nuisance (heavy metals, chlorides, sulfates, etc.). The excessive leaching of contaminants disqualifies ash from being deposited in landfills for hazardous wastes. Bottom ash following the combustion of solid municipal waste mainly contains calcium (23.81%), chlorine (5.44%) and heavy metal (Σ 11.27 g/kg) compounds, while fly ash is characterized by a high content of chlorine (7.22%) and heavy metals (Σ 7.83 g/kg). In the next stage, two concrete mixtures were designed and prepared, containing 30% of ash from combustion of solid municipal waste. The most advantageous physicomechanical properties had concrete mortars that contained 30% of bottom ash: compressive strength—29.48 MPa, bending strength—1678 kN. The performed tests showed that immobilization of dangerous compounds through the C-S-H phase of the concrete significantly decreases the migration of dangerous substance into the environment and minimizes its toxicity. Approximately 97% of the chloride and sulfate salt content was immobilized, and the heavy metal content was immobilized by the C-S-H phase to a degree of 90%. The results obtained provide the option of conveniently managing dangerous wastes with the use of a tight and durable concrete. In many cases, such technology may constitute the best and the cheapest long-term solution in the waste management economy. It may also fill a market gap in this field.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/19/5384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11195384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/19/5384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11195384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Monika Czop; Beata Łaźniewska-Piekarczyk;doi: 10.3390/su11195384
The aim of this work was to check the possibility of using a concrete matrix to immobilize contaminants from ash (fly and bottom) originating from the combustion of solid municipal waste. This work presents tests of ash from a Polish incineration plant. Nowadays, the management of ash poses a big problem with respect to the high concentration of contaminants that constitutes an environmental nuisance (heavy metals, chlorides, sulfates, etc.). The excessive leaching of contaminants disqualifies ash from being deposited in landfills for hazardous wastes. Bottom ash following the combustion of solid municipal waste mainly contains calcium (23.81%), chlorine (5.44%) and heavy metal (Σ 11.27 g/kg) compounds, while fly ash is characterized by a high content of chlorine (7.22%) and heavy metals (Σ 7.83 g/kg). In the next stage, two concrete mixtures were designed and prepared, containing 30% of ash from combustion of solid municipal waste. The most advantageous physicomechanical properties had concrete mortars that contained 30% of bottom ash: compressive strength—29.48 MPa, bending strength—1678 kN. The performed tests showed that immobilization of dangerous compounds through the C-S-H phase of the concrete significantly decreases the migration of dangerous substance into the environment and minimizes its toxicity. Approximately 97% of the chloride and sulfate salt content was immobilized, and the heavy metal content was immobilized by the C-S-H phase to a degree of 90%. The results obtained provide the option of conveniently managing dangerous wastes with the use of a tight and durable concrete. In many cases, such technology may constitute the best and the cheapest long-term solution in the waste management economy. It may also fill a market gap in this field.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/19/5384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11195384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/19/5384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11195384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Małgorzata Kajda-Szcześniak; Monika Czop;doi: 10.3390/en15041516
The article analyzes the thermal degradation in the inert and oxidative atmosphere of waste vinyl panels, the main component of which is PVC. Both pyrolysis and incineration of plastic waste are difficult, complex and multifaceted processes due to several physical and chemical phenomena occurring during their performance. The coupled TG-MS (thermogravimetry-mass spectrometry) analysis combined with the Fourier transform infrared spectrometry (TG-FTIR) analysis was used to identify the decomposition mechanisms of waste vinyl panels. Thermogravimetric tests were carried out for two heating rates of 5 and 20 K/min in the temperature range of 40–1000 °C, mass losses were determined, and products resulting from thermal degradation were identified. It was found that the individual components decompose at different temperatures depending on the heating rate and the choice of an inert or oxidative atmosphere. Vinyl floor panels were treated in terms of secondary raw material, which, in the light of the circular economy, may constitute a potential energy or chemical resource.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1516/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1516/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Małgorzata Kajda-Szcześniak; Monika Czop;doi: 10.3390/en15041516
The article analyzes the thermal degradation in the inert and oxidative atmosphere of waste vinyl panels, the main component of which is PVC. Both pyrolysis and incineration of plastic waste are difficult, complex and multifaceted processes due to several physical and chemical phenomena occurring during their performance. The coupled TG-MS (thermogravimetry-mass spectrometry) analysis combined with the Fourier transform infrared spectrometry (TG-FTIR) analysis was used to identify the decomposition mechanisms of waste vinyl panels. Thermogravimetric tests were carried out for two heating rates of 5 and 20 K/min in the temperature range of 40–1000 °C, mass losses were determined, and products resulting from thermal degradation were identified. It was found that the individual components decompose at different temperatures depending on the heating rate and the choice of an inert or oxidative atmosphere. Vinyl floor panels were treated in terms of secondary raw material, which, in the light of the circular economy, may constitute a potential energy or chemical resource.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1516/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1516/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Monika Czop; Beata Łaźniewska-Piekarczyk; Małgorzata Kajda-Szcześniak;doi: 10.3390/en15239050
Fly ash generated in the process of combustion of municipal waste is classified as hazardous waste. Its management today has become a significant problem. One of the methods of safe management of such ash may be using it for the production of concrete as a partial replacement for cement. Using immobilization, the number of hazardous compounds could be limited so that the obtained new material would be safe for the natural environment. Recovery of byproducts—in this case, fly ash—complies with the business models applied in the production cycle in the circular economy model. Such a solution may result in saving energy, limiting CO2 emissions, reducing the use of natural resources, and management of dangerous waste. It should be added that concretes with the addition of hazardous waste would be used for industrial purposes according to the binding legal regulations. This article presents the influence of the addition of fly ash on the selected mechanical properties of concrete. Fly ash from the incineration of municipal waste was used as a partial replacement of CEM I concrete at amounts of 4%, 8%, and 18% of its mass. The compressive strength and flexural strength of such concretes were tested after 28 days of concrete curing. This article also presents the tests of the leachability of contaminants from fly ash and concretes produced with Portland cement CEM I. The test results confirm that immobilization is an effective process that limits the amount of contamination in the water extract. Zinc, lead, and chrome were almost completely immobilized by the C-S-H (calcium silicate hydrate) concrete phase, with their immobilization degree exceeding 99%. Chloride content also underwent immobilization at a similar level of 99%. The sulfates were immobilized at the level of 96%. The subject matter discussed in this article is essential because, to protect the natural environment and, thus, reduce the use of natural resources, it is increasingly necessary to reuse raw materials—not natural, but recycled from the industry. Waste often contains hazardous compounds. A proposal for their safe disposal is their immobilization in a cement matrix. An important aspect is reducing leachability from concrete as much as possible, e.g., using nanomaterials. The effectiveness of reducing the leachability of hazardous compounds with the proposed method was checked in this study.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/9050/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15239050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/9050/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15239050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Monika Czop; Beata Łaźniewska-Piekarczyk; Małgorzata Kajda-Szcześniak;doi: 10.3390/en15239050
Fly ash generated in the process of combustion of municipal waste is classified as hazardous waste. Its management today has become a significant problem. One of the methods of safe management of such ash may be using it for the production of concrete as a partial replacement for cement. Using immobilization, the number of hazardous compounds could be limited so that the obtained new material would be safe for the natural environment. Recovery of byproducts—in this case, fly ash—complies with the business models applied in the production cycle in the circular economy model. Such a solution may result in saving energy, limiting CO2 emissions, reducing the use of natural resources, and management of dangerous waste. It should be added that concretes with the addition of hazardous waste would be used for industrial purposes according to the binding legal regulations. This article presents the influence of the addition of fly ash on the selected mechanical properties of concrete. Fly ash from the incineration of municipal waste was used as a partial replacement of CEM I concrete at amounts of 4%, 8%, and 18% of its mass. The compressive strength and flexural strength of such concretes were tested after 28 days of concrete curing. This article also presents the tests of the leachability of contaminants from fly ash and concretes produced with Portland cement CEM I. The test results confirm that immobilization is an effective process that limits the amount of contamination in the water extract. Zinc, lead, and chrome were almost completely immobilized by the C-S-H (calcium silicate hydrate) concrete phase, with their immobilization degree exceeding 99%. Chloride content also underwent immobilization at a similar level of 99%. The sulfates were immobilized at the level of 96%. The subject matter discussed in this article is essential because, to protect the natural environment and, thus, reduce the use of natural resources, it is increasingly necessary to reuse raw materials—not natural, but recycled from the industry. Waste often contains hazardous compounds. A proposal for their safe disposal is their immobilization in a cement matrix. An important aspect is reducing leachability from concrete as much as possible, e.g., using nanomaterials. The effectiveness of reducing the leachability of hazardous compounds with the proposed method was checked in this study.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/9050/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15239050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/9050/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15239050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Beata Łaźniewska-Piekarczyk; Dominik Smyczek; Monika Czop;doi: 10.3390/app13084895
Innovative building materials should also be pro-environmental. This article discusses the environmental footprint of geopolymer and cement-based mortars. It describes the methodology for preparing geopolymer and cement mortars using mineral wool waste. The phenol–formaldehyde resin used in mineral wool is a source of phenol and formaldehyde emissions to the environment. The prepared mortar samples were subjected to durability tests to assess the correlation between the amount of mineral wool and the flexural and compressive strength of the samples. The key element of the paper is to test whether immobilisation of mineral wool in the geopolymer will reduce leaching of phenol and formaldehyde into the environment. The results revealed that cements prepared with mineral wool showed higher compressive strength, whereas geopolymer samples had better flexural strength. The study also proved that immobilisation of the wool in the geopolymer reduces phenol and formaldehyde leaching significantly.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4895/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4895/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Beata Łaźniewska-Piekarczyk; Dominik Smyczek; Monika Czop;doi: 10.3390/app13084895
Innovative building materials should also be pro-environmental. This article discusses the environmental footprint of geopolymer and cement-based mortars. It describes the methodology for preparing geopolymer and cement mortars using mineral wool waste. The phenol–formaldehyde resin used in mineral wool is a source of phenol and formaldehyde emissions to the environment. The prepared mortar samples were subjected to durability tests to assess the correlation between the amount of mineral wool and the flexural and compressive strength of the samples. The key element of the paper is to test whether immobilisation of mineral wool in the geopolymer will reduce leaching of phenol and formaldehyde into the environment. The results revealed that cements prepared with mineral wool showed higher compressive strength, whereas geopolymer samples had better flexural strength. The study also proved that immobilisation of the wool in the geopolymer reduces phenol and formaldehyde leaching significantly.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4895/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4895/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Monika Czop; Beata Łaźniewska-Piekarczyk;doi: 10.3390/su11195384
The aim of this work was to check the possibility of using a concrete matrix to immobilize contaminants from ash (fly and bottom) originating from the combustion of solid municipal waste. This work presents tests of ash from a Polish incineration plant. Nowadays, the management of ash poses a big problem with respect to the high concentration of contaminants that constitutes an environmental nuisance (heavy metals, chlorides, sulfates, etc.). The excessive leaching of contaminants disqualifies ash from being deposited in landfills for hazardous wastes. Bottom ash following the combustion of solid municipal waste mainly contains calcium (23.81%), chlorine (5.44%) and heavy metal (Σ 11.27 g/kg) compounds, while fly ash is characterized by a high content of chlorine (7.22%) and heavy metals (Σ 7.83 g/kg). In the next stage, two concrete mixtures were designed and prepared, containing 30% of ash from combustion of solid municipal waste. The most advantageous physicomechanical properties had concrete mortars that contained 30% of bottom ash: compressive strength—29.48 MPa, bending strength—1678 kN. The performed tests showed that immobilization of dangerous compounds through the C-S-H phase of the concrete significantly decreases the migration of dangerous substance into the environment and minimizes its toxicity. Approximately 97% of the chloride and sulfate salt content was immobilized, and the heavy metal content was immobilized by the C-S-H phase to a degree of 90%. The results obtained provide the option of conveniently managing dangerous wastes with the use of a tight and durable concrete. In many cases, such technology may constitute the best and the cheapest long-term solution in the waste management economy. It may also fill a market gap in this field.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/19/5384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11195384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/19/5384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11195384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Monika Czop; Beata Łaźniewska-Piekarczyk;doi: 10.3390/su11195384
The aim of this work was to check the possibility of using a concrete matrix to immobilize contaminants from ash (fly and bottom) originating from the combustion of solid municipal waste. This work presents tests of ash from a Polish incineration plant. Nowadays, the management of ash poses a big problem with respect to the high concentration of contaminants that constitutes an environmental nuisance (heavy metals, chlorides, sulfates, etc.). The excessive leaching of contaminants disqualifies ash from being deposited in landfills for hazardous wastes. Bottom ash following the combustion of solid municipal waste mainly contains calcium (23.81%), chlorine (5.44%) and heavy metal (Σ 11.27 g/kg) compounds, while fly ash is characterized by a high content of chlorine (7.22%) and heavy metals (Σ 7.83 g/kg). In the next stage, two concrete mixtures were designed and prepared, containing 30% of ash from combustion of solid municipal waste. The most advantageous physicomechanical properties had concrete mortars that contained 30% of bottom ash: compressive strength—29.48 MPa, bending strength—1678 kN. The performed tests showed that immobilization of dangerous compounds through the C-S-H phase of the concrete significantly decreases the migration of dangerous substance into the environment and minimizes its toxicity. Approximately 97% of the chloride and sulfate salt content was immobilized, and the heavy metal content was immobilized by the C-S-H phase to a degree of 90%. The results obtained provide the option of conveniently managing dangerous wastes with the use of a tight and durable concrete. In many cases, such technology may constitute the best and the cheapest long-term solution in the waste management economy. It may also fill a market gap in this field.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/19/5384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11195384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/11/19/5384/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11195384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu