- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:OpenEdition Authors: Confortola, Gabriele; Soncini, Andrea; Bocchiola, Daniele;doi: 10.4000/rga.2176
handle: 20.500.13089/k4ex
Climate change will affect hydrological cycle and water resources in the Alps. Here we sketched potential future (2045-2054) hydrological cycle under prospective climate change scenarios within an Alpine river of Italy: Serio (ca. 300 km2). Therein, hydrology is highly dependent upon snow cover cycle, very likely to be affected by climate changes. We set up and validated a hydrological model able to mimic water resources regime of the river. We then use downscaled future temperature and precipitation from two general circulation models GCMs to feed the hydrological model and obtain projected hydrological regimes, at flow sections at different altitudes within the catchment. The scenarios and storylines from the adopted GCMs differ from one another with respect to projected precipitation and temperature amount, but agree upon decrease of the former and increase of the latter. All hydrological scenarios agree upon prospective shrinkage of seasonal snow cover due to increased temperature, and upon prospective increase of Fall and Winter stream flows as due to increased liquid precipitation. Lower discharges are projected during Spring and Summer, in view of decreased rainfall and snow cover at thaw, and the CCSM3 model provides shifting of thaw season to one month earlier. Higher catchments are more impacted because Winter flows increase more proportionally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.2176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.2176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:OpenEdition Authors: Confortola, Gabriele; Soncini, Andrea; Bocchiola, Daniele;doi: 10.4000/rga.2176
handle: 20.500.13089/k4ex
Climate change will affect hydrological cycle and water resources in the Alps. Here we sketched potential future (2045-2054) hydrological cycle under prospective climate change scenarios within an Alpine river of Italy: Serio (ca. 300 km2). Therein, hydrology is highly dependent upon snow cover cycle, very likely to be affected by climate changes. We set up and validated a hydrological model able to mimic water resources regime of the river. We then use downscaled future temperature and precipitation from two general circulation models GCMs to feed the hydrological model and obtain projected hydrological regimes, at flow sections at different altitudes within the catchment. The scenarios and storylines from the adopted GCMs differ from one another with respect to projected precipitation and temperature amount, but agree upon decrease of the former and increase of the latter. All hydrological scenarios agree upon prospective shrinkage of seasonal snow cover due to increased temperature, and upon prospective increase of Fall and Winter stream flows as due to increased liquid precipitation. Lower discharges are projected during Spring and Summer, in view of decreased rainfall and snow cover at thaw, and the CCSM3 model provides shifting of thaw season to one month earlier. Higher catchments are more impacted because Winter flows increase more proportionally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.2176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.2176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Soncini Andrea; Bocchiola Daniele; Bocchiola Daniele; Confortola Gabriele; Minora Umberto; Vuillermoz Elisa; Salerno Franco; Salerno Franco; Viviano Gaetano; Viviano Gaetano; Shrestha Dibas; Senese Antonella; Smiraglia Claudio; Diolaiuti Guglielmina; Diolaiuti Guglielmina;pmid: 27262982
handle: 20.500.14243/320407 , 2434/395617 , 11311/1013278
Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required.
Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Soncini Andrea; Bocchiola Daniele; Bocchiola Daniele; Confortola Gabriele; Minora Umberto; Vuillermoz Elisa; Salerno Franco; Salerno Franco; Viviano Gaetano; Viviano Gaetano; Shrestha Dibas; Senese Antonella; Smiraglia Claudio; Diolaiuti Guglielmina; Diolaiuti Guglielmina;pmid: 27262982
handle: 20.500.14243/320407 , 2434/395617 , 11311/1013278
Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required.
Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:OpenEdition Authors: Confortola, Gabriele; Soncini, Andrea; Bocchiola, Daniele;doi: 10.4000/rga.2176
handle: 20.500.13089/k4ex
Climate change will affect hydrological cycle and water resources in the Alps. Here we sketched potential future (2045-2054) hydrological cycle under prospective climate change scenarios within an Alpine river of Italy: Serio (ca. 300 km2). Therein, hydrology is highly dependent upon snow cover cycle, very likely to be affected by climate changes. We set up and validated a hydrological model able to mimic water resources regime of the river. We then use downscaled future temperature and precipitation from two general circulation models GCMs to feed the hydrological model and obtain projected hydrological regimes, at flow sections at different altitudes within the catchment. The scenarios and storylines from the adopted GCMs differ from one another with respect to projected precipitation and temperature amount, but agree upon decrease of the former and increase of the latter. All hydrological scenarios agree upon prospective shrinkage of seasonal snow cover due to increased temperature, and upon prospective increase of Fall and Winter stream flows as due to increased liquid precipitation. Lower discharges are projected during Spring and Summer, in view of decreased rainfall and snow cover at thaw, and the CCSM3 model provides shifting of thaw season to one month earlier. Higher catchments are more impacted because Winter flows increase more proportionally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.2176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.2176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:OpenEdition Authors: Confortola, Gabriele; Soncini, Andrea; Bocchiola, Daniele;doi: 10.4000/rga.2176
handle: 20.500.13089/k4ex
Climate change will affect hydrological cycle and water resources in the Alps. Here we sketched potential future (2045-2054) hydrological cycle under prospective climate change scenarios within an Alpine river of Italy: Serio (ca. 300 km2). Therein, hydrology is highly dependent upon snow cover cycle, very likely to be affected by climate changes. We set up and validated a hydrological model able to mimic water resources regime of the river. We then use downscaled future temperature and precipitation from two general circulation models GCMs to feed the hydrological model and obtain projected hydrological regimes, at flow sections at different altitudes within the catchment. The scenarios and storylines from the adopted GCMs differ from one another with respect to projected precipitation and temperature amount, but agree upon decrease of the former and increase of the latter. All hydrological scenarios agree upon prospective shrinkage of seasonal snow cover due to increased temperature, and upon prospective increase of Fall and Winter stream flows as due to increased liquid precipitation. Lower discharges are projected during Spring and Summer, in view of decreased rainfall and snow cover at thaw, and the CCSM3 model provides shifting of thaw season to one month earlier. Higher catchments are more impacted because Winter flows increase more proportionally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.2176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4000/rga.2176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Soncini Andrea; Bocchiola Daniele; Bocchiola Daniele; Confortola Gabriele; Minora Umberto; Vuillermoz Elisa; Salerno Franco; Salerno Franco; Viviano Gaetano; Viviano Gaetano; Shrestha Dibas; Senese Antonella; Smiraglia Claudio; Diolaiuti Guglielmina; Diolaiuti Guglielmina;pmid: 27262982
handle: 20.500.14243/320407 , 2434/395617 , 11311/1013278
Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required.
Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Soncini Andrea; Bocchiola Daniele; Bocchiola Daniele; Confortola Gabriele; Minora Umberto; Vuillermoz Elisa; Salerno Franco; Salerno Franco; Viviano Gaetano; Viviano Gaetano; Shrestha Dibas; Senese Antonella; Smiraglia Claudio; Diolaiuti Guglielmina; Diolaiuti Guglielmina;pmid: 27262982
handle: 20.500.14243/320407 , 2434/395617 , 11311/1013278
Assessment of future water resources under climate change is required in the Himalayas, where hydrological cycle is poorly studied and little understood. This study focuses on the upper Dudh Koshi river of Nepal (151km(2), 4200-8848ma.s.l.) at the toe of Mt. Everest, nesting the debris covered Khumbu, and Khangri Nup glaciers (62km(2)). New data gathered during three years of field campaigns (2012-2014) were used to set up a glacio-hydrological model describing stream flows, snow and ice melt, ice cover thickness and glaciers' flow dynamics. The model was validated, and used to assess changes of the hydrological cycle until 2100. Climate projections are used from three Global Climate Models used in the recent IPCC AR5 under RCP2.6, RCP4.5 and RCP8.5. Flow statistics are estimated for two reference decades 2045-2054, and 2090-2099, and compared against control run CR, 2012-2014. During CR we found a contribution of ice melt to stream flows of 55% yearly, with snow melt contributing for 19%. Future flows are predicted to increase in monsoon season, but to decrease yearly (-4% vs CR on average) at 2045-2054. At the end of century large reduction would occur in all seasons, i.e. -26% vs CR on average at 2090-2099. At half century yearly contribution of ice melt would be on average 45%, and snow melt 28%. At the end of century ice melt would be 31%, and snow contribution 39%. Glaciers in the area are projected to thin largely up to 6500ma.s.l. until 2100, reducing their volume by -50% or more, and their ice covered area by -30% or more. According to our results, in the future water resources in the upper Dudh Koshi would decrease, and depend largely upon snow melt and rainfall, so that adaptation measures to modified water availability will be required.
Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down The Science of The Total EnvironmentArticleLicense: Elsevier Non-CommercialData sources: UnpayWallThe Science of The Total EnvironmentArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.05.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu