Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Satya Lakshmi Pasarakonda; Srikanth Ponnada; Maryam Sadat Kiai; Velu Duraisamy; +4 Authors

    The development of efficient, low‐cost, non‐noble metal‐oxide‐based nanohybrid materials for overall water splitting is a critical strategy for enhancing clean energy use and addressing environmental issues. In this study, an interfacial engineering strategy for the development of bimetallic Co–Ni nanoparticles on graphitic carbon nitride (g‐C3N4) using ultrasonication followed by coprecipitation is conveyed. These nanoparticles demonstrate high efficacy as bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions. Co–Ni nanoparticles on graphitic carbon nitride demonstrate an increased surface area via ultrasonication and subsequent coprecipitation. The g‐C3N4 combined with Co–Ni nanoparticles leads to the development of bifunctional catalysts that exhibit significant efficiency in both HER and OER, and their interfacial properties are investigated for the first time. The chemical composition and morphology of g‐C3N4 integrated with Co–Ni nanoparticles significantly influence the modulation of redox‐active sites and the facilitation of electron transfer, resulting in improved splitting efficiency. The interactions between the Co–Ni bimetal and g‐C3N4 demonstrate exceptional electrochemical performance for water splitting. Consequently, the 20% 20–Co–Ni–graphitic carbon nitride electrode demonstrated superior HER performance, comparable to the other electrodes. In the results, it is indicated that an increased molar ratio of Co and Ni incorporated in graphitic carbon nitride significantly improves HER performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Technology
    Article . 2024 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Technology
      Article . 2024 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Satya Lakshmi Pasarakonda; Srikanth Ponnada; Maryam Sadat Kiai; Velu Duraisamy; +4 Authors

    The development of efficient, low‐cost, non‐noble metal‐oxide‐based nanohybrid materials for overall water splitting is a critical strategy for enhancing clean energy use and addressing environmental issues. In this study, an interfacial engineering strategy for the development of bimetallic Co–Ni nanoparticles on graphitic carbon nitride (g‐C3N4) using ultrasonication followed by coprecipitation is conveyed. These nanoparticles demonstrate high efficacy as bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions. Co–Ni nanoparticles on graphitic carbon nitride demonstrate an increased surface area via ultrasonication and subsequent coprecipitation. The g‐C3N4 combined with Co–Ni nanoparticles leads to the development of bifunctional catalysts that exhibit significant efficiency in both HER and OER, and their interfacial properties are investigated for the first time. The chemical composition and morphology of g‐C3N4 integrated with Co–Ni nanoparticles significantly influence the modulation of redox‐active sites and the facilitation of electron transfer, resulting in improved splitting efficiency. The interactions between the Co–Ni bimetal and g‐C3N4 demonstrate exceptional electrochemical performance for water splitting. Consequently, the 20% 20–Co–Ni–graphitic carbon nitride electrode demonstrated superior HER performance, comparable to the other electrodes. In the results, it is indicated that an increased molar ratio of Co and Ni incorporated in graphitic carbon nitride significantly improves HER performance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Technology
    Article . 2024 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Technology
      Article . 2024 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph