- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020 Denmark, Norway, South Africa, Belgium, Australia, France, Netherlands, Norway, Denmark, Australia, Italy, Denmark, Australia, ItalyPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITY, RCN | SET 11: New IEA Task ENER...EC| HYDRIDE4MOBILITY ,RCN| SET 11: New IEA Task ENERGY STORAGE AND CONVERSION BASED ON HYDROGENSangryun Kim; Marcello Baricco; Terry D. Humphries; Dag Noréus; Martin Dornheim; Craig E. Buckley; Petra E. de Jongh; David M. Grant; Ping Chen; Shin Ichi Orimo; Fermin Cuevas; William I. F. David; William I. F. David; Dorthe Bomholdt Ravnsbæk; Peter Ngene; Yaroslav Filinchuk; Michael Felderhoff; Michel Latroche; M. Veronica Sofianos; Terrence J. Udovic; Joshua W. Makepeace; Hai Wen Li; Teng He; Kasper T. Møller; Torben R. Jensen; Lubna Naheed; Jean-Claude Crivello; Young Whan Cho; Didier Blanchard; George E. Froudakis; Michael Hirscher; Colin J. Webb; Claudia Weidenthaler; José M. Bellosta von Colbe; Volodymyr A. Yartys; Tejs Vegge; Evan Gray; Luca Pasquini; Gavin S. Walker; Claudia Zlotea; Mark Paskevicius; Robert C. Bowman; Mykhaylo Lototskyy; Yoshitsugu Kojima; Darren P. Broom; Fei Chang; Magnus Moe Nygård; Roman V. Denys; Bjørn C. Hauback;handle: 2078.1/231507 , 11250/2646540 , 11585/752698 , 2318/1740145 , 20.500.11937/82257 , 10566/5465 , 10072/398791
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The Magnesium group of international experts contributing to IEA Task 32 Hydrogen Based Energy Storage recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2,nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 694 citations 694 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, Spain, Australia, Italy, South Africa, France, Norway, AustraliaPublisher:IOP Publishing Funded by:EC | HyCARE, EC | HYDRIDE4MOBILITY, UKRI | Decarbonisation Of Food C... +3 projectsEC| HyCARE ,EC| HYDRIDE4MOBILITY ,UKRI| Decarbonisation Of Food Cold Chain Through Integrated Hydrogen Technologies ,ARC| Discovery Projects - Grant ID: DP150101708 ,ARC| Integrated Advanced X-ray Diffraction Facility ,ARC| Facility for studying the sorption properties of gases by nanostructured materialsPasquini, Luca; Sakaki, Kouji; Akiba, Etsuo; Allendorf, Mark; Alvares, Ebert; Ares, Josè; Babai, Dotan; Baricco, Marcello; Bellosta von Colbe, Josè; Bereznitsky, Matvey; Buckley, Craig; Cho, Young; Cuevas, Fermin; de Rango, Patricia; Dematteis, Erika; Denys, Roman; Dornheim, Martin; Fernández, J; Hariyadi, Arif; Hauback, Bjørn; Heo, Tae; Hirscher, Michael; Humphries, Terry; Huot, Jacques; Jacob, Isaac; Jensen, Torben; Jerabek, Paul; Kang, Shin; Keilbart, Nathan; Kim, Hyunjeong; Latroche, Michel; Leardini, F; Li, Haiwen; Ling, Sanliang; Lototskyy, Mykhaylo; Mullen, Ryan; Orimo, Shin-Ichi; Paskevicius, Mark; Pistidda, Claudio; Polanski, Marek; Puszkiel, Julián; Rabkin, Eugen; Sahlberg, Martin; Sartori, Sabrina; Santhosh, Archa; Sato, Toyoto; Shneck, Roni; Sørby, Magnus; Shang, Yuanyuan; Stavila, Vitalie; Suh, Jin-Yoo; Suwarno, Suwarno; Thi Thu, Le; Wan, Liwen; Webb, Colin; Witman, Matthew; Wan, Chubin; Wood, Brandon; Yartys, Volodymyr;handle: 10852/101597 , 10486/706696 , 11585/899522 , 2318/1879083 , 10072/419708 , 10566/8043
Abstract Hydrides based on magnesium and intermetallic compounds provide a viable solution to the challenge of energy storage from renewable sources, thanks to their ability to absorb and desorb hydrogen in a reversible way with a proper tuning of pressure and temperature conditions. Therefore, they are expected to play an important role in the clean energy transition and in the deployment of hydrogen as an efficient energy vector. This review, by experts of Task 40 ‘Energy Storage and Conversion based on Hydrogen’ of the Hydrogen Technology Collaboration Programme of the International Energy Agency, reports on the latest activities of the working group ‘Magnesium- and Intermetallic alloys-based Hydrides for Energy Storage’. The following topics are covered by the review: multiscale modelling of hydrides and hydrogen sorption mechanisms; synthesis and processing techniques; catalysts for hydrogen sorption in Mg; Mg-based nanostructures and new compounds; hydrides based on intermetallic TiFe alloys, high entropy alloys, Laves phases, and Pd-containing alloys. Finally, an outlook is presented on current worldwide investments and future research directions for hydrogen-based energy storage.
Archivio istituziona... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/419708Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/101597Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03723286Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 74 citations 74 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/419708Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/101597Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03723286Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Presentation , Other literature type , Journal 2019 Spain, Italy, Australia, Australia, France, Denmark, Netherlands, Italy, AustraliaPublisher:Elsevier BV Funded by:ARC | Integrated Advanced X-ray..., ARC | Facility for studying the..., RCN | SET 11: New IEA Task ENER... +2 projectsARC| Integrated Advanced X-ray Diffraction Facility ,ARC| Facility for studying the sorption properties of gases by nanostructured materials ,RCN| SET 11: New IEA Task ENERGY STORAGE AND CONVERSION BASED ON HYDROGEN ,ARC| Linkage Projects - Grant ID: LP150100730 ,EC| HYDRIDE4MOBILITYYartys, V.A.; Lototskyy, M.V.; Akiba, E.; Albert, R.; Antonov, E.; Ares, R.; Baricco, M.; Bourgeois, N.; Buckley, E.; Bellosta von Colbe, M.; Crivello, J.-C.; Cuevas, F.; Denys, R.; Dornheim, M.; Felderhoff, M.; Grant, M.; Hauback, B.C.; Humphries, T.D.; Jacob, I.; Jensen, R.; de Jongh, E.; Joubert, J.-M.; Kuzovnikov, M.; Latroche, Michel; Paskevicius, M.; Pasquini, L.; Popilevsky, L.; Skripnyuk, M.; Rabkin, E.; Sofianos, M.V.; Stuart, A.; Walker, G.; Wang, Hui; Webb, C.J.; Zhu, Min;handle: 10486/714237 , 11585/727794 , 10072/384975 , 20.500.11937/74916
16th International Symposium on Metal - Hydrogen Systems, Guangzhou / China, 28 Oct - 2 Nov 2018 (oral); MH2018: Abstract ID 300
Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019License: CC BY NC NDData sources: Pure Utrecht UniversityRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Other literature type . 2018Data sources: European Union Open Data PortalGriffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.12.212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 589 citations 589 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 11visibility views 11 download downloads 28 Powered bymore_vert Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019License: CC BY NC NDData sources: Pure Utrecht UniversityRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Other literature type . 2018Data sources: European Union Open Data PortalGriffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.12.212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; Jean Nei; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2470375 , 11250/2460328
Herein, we present a comparison of the electrochemical hydrogen-storage characteristics of two state-of-art Laves phase-based metal hydride alloys (Zr21.5Ti12.0V10.0Cr7.5Mn8.1Co8.0Ni32.2Sn0.3Al0.4 vs. Zr25.0Ti6.5V3.9Mn22.2Fe3.8Ni38.0La0.3) prepared by induction melting and hydrogen decrepitation. The relatively high contents of lighter transition metals (V and Cr) in the first composition results in an average electron density below the C14/C15 threshold ( e / a ~ 6.9 ) and produces a C14-predominated structure, while the average electron density of the second composition is above the C14/C15 threshold and results in a C15-predominated structure. From a combination of variations in composition, main phase structure, and degree of homogeneity, the C14-predominated alloy exhibits higher storage capacities (in both the gaseous phase and electrochemical environment), a slower activation, inferior high-rate discharge, and low-temperature performances, and a better cycle stability compared to the C15-predominated alloy. The superiority in high-rate dischargeability in the C15-predominated alloy is mainly due to its larger reactive surface area. Annealing of the C15-predominated alloy eliminates the ZrNi secondary phase completely and changes the composition of the La-containing secondary phase. While the former change sacrifices the synergetic effects, and degrades the hydrogen storage performance, the latter may contribute to the unchanged surface catalytic ability, even with a reduction in total volume of metallic nickel clusters embedded in the activated surface oxide layer. In general, the C14-predominated alloy is more suitable for high-capacity and long cycle life applications, and the C15-predominated alloy can be used in areas requiring easy activation, and better high-rate and low-temperature performances.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; John Koch; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2460274 , 11250/2469288
The performance of cylindrical cells made from negative electrode active materials of two selected AB2 metal hydride chemistries with different dominating Laves phases (C14 vs. C15) were compared. Cells made from Alloy C15 showed a higher high-rate performance and peak power with a corresponding sacrifice in capacity, low-temperature performance, charge retention, and cycle life when compared with the C14 counterpart (Alloy C14). Annealing of the Alloy C15 eliminated the ZrNi secondary phase and further improved the high-rate and peak power performance. This treatment on Alloy C15 showed the best low-temperature performance, but also contributed to a less-desirable high-temperature voltage stand and an inferior cycle stability. While the main failure mode for Alloy C14 in the sealed cell is the formation of a thick oxide layer that prevents gas recombination during overcharge and consequent venting of the cell, the failure mode for Alloy C15 is dominated by continuous pulverization related to the volumetric changes during hydride formation and hysteresis in the pressure-composition-temperature isotherm. The leached-out Mn from Alloy C15 formed a high density of oxide deposits in the separator, leading to a deterioration in charge retention performance. Large amounts of Zr were found in the positive electrode of the cycled cell containing Alloy C15, but did not appear to harm cell performance. Suggestions for further composition and process optimization for Alloy C15 are also provided.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Australia, Norway, Norway, NorwayPublisher:MDPI AG Funded by:RCN | NOVEL MAGNESIUM BASED NAN...RCN| NOVEL MAGNESIUM BASED NANOMATERIALS FOR ADVANCED RECHARGEABLE BATTERIESAuthors: Denys, Roman V; Yartys, Volodymyr A; Gray, Evan MacA; Webb, Colin J;doi: 10.3390/en8043198
handle: 11250/2356290 , 11250/2364797 , 10072/124971
This work focused on the high pressure PCT and in situ neutron powder diffraction studies of the LaMg2Ni9-H2 (D2) system at pressures up to 1,000 bar. LaMg2Ni9 alloy was prepared by a powder metallurgy route from the LaNi9 alloy precursor and Mg powder. Two La3−xMgxNi9 samples with slightly different La/Mg ratios were studied, La1.1Mg1.9Ni9 (sample 1) and La0.9Mg2.1Ni9 (sample 2). In situ neutron powder diffraction studies of the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) deuterides were performed at 25 bar D2 (1) and 918 bar D2 (2). The hydrogenation properties of the (1) and (2) are dramatically different from those for LaNi3. The Mg-containing intermetallics reversibly form hydrides with DHdes = 24.0 kJ/molH2 and an equilibrium pressure of H2 desorption of 18 bar at 20 °C (La1.09Mg1.91Ni9). A pronounced hysteresis of H2 absorption and desorption, ~100 bar, is observed. The studies showed that LaNi5-assisted hydrogenation of MgNi2 in the LaMg2Ni9 hybrid structure takes place. In the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) (a = 5.263/5.212; c = 25.803/25.71 Å) D atoms are accommodated in both Laves and CaCu5-type slabs. In the LaNi5 CaCu5-type layer, D atoms fill three types of interstices; a deformed octahedron [La2Ni4], and [La(Mg)2Ni2] and [Ni4] tetrahedra. The overall chemical compositions can be presented as LaNi5H5.6/5.0 + 2*MgNi2H1.95/2.2 showing that the hydrogenation of the MgNi2 slab proceeds at mild H2/D2 pressure of just 20 bar. A partial filling by D of the four types of the tetrahedral interstices in the MgNi2 slab takes place, including [MgNi3] and [Mg2Ni2] tetrahedra.
ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020 Denmark, Norway, South Africa, Belgium, Australia, France, Netherlands, Norway, Denmark, Australia, Italy, Denmark, Australia, ItalyPublisher:Elsevier BV Funded by:EC | HYDRIDE4MOBILITY, RCN | SET 11: New IEA Task ENER...EC| HYDRIDE4MOBILITY ,RCN| SET 11: New IEA Task ENERGY STORAGE AND CONVERSION BASED ON HYDROGENSangryun Kim; Marcello Baricco; Terry D. Humphries; Dag Noréus; Martin Dornheim; Craig E. Buckley; Petra E. de Jongh; David M. Grant; Ping Chen; Shin Ichi Orimo; Fermin Cuevas; William I. F. David; William I. F. David; Dorthe Bomholdt Ravnsbæk; Peter Ngene; Yaroslav Filinchuk; Michael Felderhoff; Michel Latroche; M. Veronica Sofianos; Terrence J. Udovic; Joshua W. Makepeace; Hai Wen Li; Teng He; Kasper T. Møller; Torben R. Jensen; Lubna Naheed; Jean-Claude Crivello; Young Whan Cho; Didier Blanchard; George E. Froudakis; Michael Hirscher; Colin J. Webb; Claudia Weidenthaler; José M. Bellosta von Colbe; Volodymyr A. Yartys; Tejs Vegge; Evan Gray; Luca Pasquini; Gavin S. Walker; Claudia Zlotea; Mark Paskevicius; Robert C. Bowman; Mykhaylo Lototskyy; Yoshitsugu Kojima; Darren P. Broom; Fei Chang; Magnus Moe Nygård; Roman V. Denys; Bjørn C. Hauback;handle: 2078.1/231507 , 11250/2646540 , 11585/752698 , 2318/1740145 , 20.500.11937/82257 , 10566/5465 , 10072/398791
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The Magnesium group of international experts contributing to IEA Task 32 Hydrogen Based Energy Storage recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2,nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 694 citations 694 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10072/398791Data sources: Bielefeld Academic Search Engine (BASE)Journal of Alloys and CompoundsArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: Pure Utrecht UniversityOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputJournal of Alloys and CompoundsArticle . 2020License: CC BY NC NDData sources: University of Southern Denmark Research Outputhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteJournal of Alloys and CompoundsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of the Western Cap: UWC Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jallcom.2019.153548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, Spain, Australia, Italy, South Africa, France, Norway, AustraliaPublisher:IOP Publishing Funded by:EC | HyCARE, EC | HYDRIDE4MOBILITY, UKRI | Decarbonisation Of Food C... +3 projectsEC| HyCARE ,EC| HYDRIDE4MOBILITY ,UKRI| Decarbonisation Of Food Cold Chain Through Integrated Hydrogen Technologies ,ARC| Discovery Projects - Grant ID: DP150101708 ,ARC| Integrated Advanced X-ray Diffraction Facility ,ARC| Facility for studying the sorption properties of gases by nanostructured materialsPasquini, Luca; Sakaki, Kouji; Akiba, Etsuo; Allendorf, Mark; Alvares, Ebert; Ares, Josè; Babai, Dotan; Baricco, Marcello; Bellosta von Colbe, Josè; Bereznitsky, Matvey; Buckley, Craig; Cho, Young; Cuevas, Fermin; de Rango, Patricia; Dematteis, Erika; Denys, Roman; Dornheim, Martin; Fernández, J; Hariyadi, Arif; Hauback, Bjørn; Heo, Tae; Hirscher, Michael; Humphries, Terry; Huot, Jacques; Jacob, Isaac; Jensen, Torben; Jerabek, Paul; Kang, Shin; Keilbart, Nathan; Kim, Hyunjeong; Latroche, Michel; Leardini, F; Li, Haiwen; Ling, Sanliang; Lototskyy, Mykhaylo; Mullen, Ryan; Orimo, Shin-Ichi; Paskevicius, Mark; Pistidda, Claudio; Polanski, Marek; Puszkiel, Julián; Rabkin, Eugen; Sahlberg, Martin; Sartori, Sabrina; Santhosh, Archa; Sato, Toyoto; Shneck, Roni; Sørby, Magnus; Shang, Yuanyuan; Stavila, Vitalie; Suh, Jin-Yoo; Suwarno, Suwarno; Thi Thu, Le; Wan, Liwen; Webb, Colin; Witman, Matthew; Wan, Chubin; Wood, Brandon; Yartys, Volodymyr;handle: 10852/101597 , 10486/706696 , 11585/899522 , 2318/1879083 , 10072/419708 , 10566/8043
Abstract Hydrides based on magnesium and intermetallic compounds provide a viable solution to the challenge of energy storage from renewable sources, thanks to their ability to absorb and desorb hydrogen in a reversible way with a proper tuning of pressure and temperature conditions. Therefore, they are expected to play an important role in the clean energy transition and in the deployment of hydrogen as an efficient energy vector. This review, by experts of Task 40 ‘Energy Storage and Conversion based on Hydrogen’ of the Hydrogen Technology Collaboration Programme of the International Energy Agency, reports on the latest activities of the working group ‘Magnesium- and Intermetallic alloys-based Hydrides for Energy Storage’. The following topics are covered by the review: multiscale modelling of hydrides and hydrogen sorption mechanisms; synthesis and processing techniques; catalysts for hydrogen sorption in Mg; Mg-based nanostructures and new compounds; hydrides based on intermetallic TiFe alloys, high entropy alloys, Laves phases, and Pd-containing alloys. Finally, an outlook is presented on current worldwide investments and future research directions for hydrogen-based energy storage.
Archivio istituziona... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/419708Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/101597Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03723286Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 74 citations 74 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/419708Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/101597Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03723286Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of the Western Cap: UWC Research RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2516-1083/ac7190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Presentation , Other literature type , Journal 2019 Spain, Italy, Australia, Australia, France, Denmark, Netherlands, Italy, AustraliaPublisher:Elsevier BV Funded by:ARC | Integrated Advanced X-ray..., ARC | Facility for studying the..., RCN | SET 11: New IEA Task ENER... +2 projectsARC| Integrated Advanced X-ray Diffraction Facility ,ARC| Facility for studying the sorption properties of gases by nanostructured materials ,RCN| SET 11: New IEA Task ENERGY STORAGE AND CONVERSION BASED ON HYDROGEN ,ARC| Linkage Projects - Grant ID: LP150100730 ,EC| HYDRIDE4MOBILITYYartys, V.A.; Lototskyy, M.V.; Akiba, E.; Albert, R.; Antonov, E.; Ares, R.; Baricco, M.; Bourgeois, N.; Buckley, E.; Bellosta von Colbe, M.; Crivello, J.-C.; Cuevas, F.; Denys, R.; Dornheim, M.; Felderhoff, M.; Grant, M.; Hauback, B.C.; Humphries, T.D.; Jacob, I.; Jensen, R.; de Jongh, E.; Joubert, J.-M.; Kuzovnikov, M.; Latroche, Michel; Paskevicius, M.; Pasquini, L.; Popilevsky, L.; Skripnyuk, M.; Rabkin, E.; Sofianos, M.V.; Stuart, A.; Walker, G.; Wang, Hui; Webb, C.J.; Zhu, Min;handle: 10486/714237 , 11585/727794 , 10072/384975 , 20.500.11937/74916
16th International Symposium on Metal - Hydrogen Systems, Guangzhou / China, 28 Oct - 2 Nov 2018 (oral); MH2018: Abstract ID 300
Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019License: CC BY NC NDData sources: Pure Utrecht UniversityRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Other literature type . 2018Data sources: European Union Open Data PortalGriffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.12.212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 589 citations 589 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 11visibility views 11 download downloads 28 Powered bymore_vert Archivio istituziona... arrow_drop_down Curtin University: espaceArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2019License: CC BY NC NDData sources: Pure Utrecht UniversityRecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAInternational Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5281/zeno...Other literature type . 2018Data sources: European Union Open Data PortalGriffith University: Griffith Research OnlineArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2018.12.212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; Jean Nei; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2470375 , 11250/2460328
Herein, we present a comparison of the electrochemical hydrogen-storage characteristics of two state-of-art Laves phase-based metal hydride alloys (Zr21.5Ti12.0V10.0Cr7.5Mn8.1Co8.0Ni32.2Sn0.3Al0.4 vs. Zr25.0Ti6.5V3.9Mn22.2Fe3.8Ni38.0La0.3) prepared by induction melting and hydrogen decrepitation. The relatively high contents of lighter transition metals (V and Cr) in the first composition results in an average electron density below the C14/C15 threshold ( e / a ~ 6.9 ) and produces a C14-predominated structure, while the average electron density of the second composition is above the C14/C15 threshold and results in a C15-predominated structure. From a combination of variations in composition, main phase structure, and degree of homogeneity, the C14-predominated alloy exhibits higher storage capacities (in both the gaseous phase and electrochemical environment), a slower activation, inferior high-rate discharge, and low-temperature performances, and a better cycle stability compared to the C15-predominated alloy. The superiority in high-rate dischargeability in the C15-predominated alloy is mainly due to its larger reactive surface area. Annealing of the C15-predominated alloy eliminates the ZrNi secondary phase completely and changes the composition of the La-containing secondary phase. While the former change sacrifices the synergetic effects, and degrades the hydrogen storage performance, the latter may contribute to the unchanged surface catalytic ability, even with a reduction in total volume of metallic nickel clusters embedded in the activated surface oxide layer. In general, the C14-predominated alloy is more suitable for high-capacity and long cycle life applications, and the C15-predominated alloy can be used in areas requiring easy activation, and better high-rate and low-temperature performances.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/3/22/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3030022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NorwayPublisher:MDPI AG Kwo-Hsiung Young; John Koch; Chubin Wan; Roman Denys; Volodymyr Yartys;handle: 11250/2460274 , 11250/2469288
The performance of cylindrical cells made from negative electrode active materials of two selected AB2 metal hydride chemistries with different dominating Laves phases (C14 vs. C15) were compared. Cells made from Alloy C15 showed a higher high-rate performance and peak power with a corresponding sacrifice in capacity, low-temperature performance, charge retention, and cycle life when compared with the C14 counterpart (Alloy C14). Annealing of the Alloy C15 eliminated the ZrNi secondary phase and further improved the high-rate and peak power performance. This treatment on Alloy C15 showed the best low-temperature performance, but also contributed to a less-desirable high-temperature voltage stand and an inferior cycle stability. While the main failure mode for Alloy C14 in the sealed cell is the formation of a thick oxide layer that prevents gas recombination during overcharge and consequent venting of the cell, the failure mode for Alloy C15 is dominated by continuous pulverization related to the volumetric changes during hydride formation and hysteresis in the pressure-composition-temperature isotherm. The leached-out Mn from Alloy C15 formed a high density of oxide deposits in the separator, leading to a deterioration in charge retention performance. Large amounts of Zr were found in the positive electrode of the cycled cell containing Alloy C15, but did not appear to harm cell performance. Suggestions for further composition and process optimization for Alloy C15 are also provided.
Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2313-0105/3/4/29/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries3040029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Australia, Norway, Norway, NorwayPublisher:MDPI AG Funded by:RCN | NOVEL MAGNESIUM BASED NAN...RCN| NOVEL MAGNESIUM BASED NANOMATERIALS FOR ADVANCED RECHARGEABLE BATTERIESAuthors: Denys, Roman V; Yartys, Volodymyr A; Gray, Evan MacA; Webb, Colin J;doi: 10.3390/en8043198
handle: 11250/2356290 , 11250/2364797 , 10072/124971
This work focused on the high pressure PCT and in situ neutron powder diffraction studies of the LaMg2Ni9-H2 (D2) system at pressures up to 1,000 bar. LaMg2Ni9 alloy was prepared by a powder metallurgy route from the LaNi9 alloy precursor and Mg powder. Two La3−xMgxNi9 samples with slightly different La/Mg ratios were studied, La1.1Mg1.9Ni9 (sample 1) and La0.9Mg2.1Ni9 (sample 2). In situ neutron powder diffraction studies of the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) deuterides were performed at 25 bar D2 (1) and 918 bar D2 (2). The hydrogenation properties of the (1) and (2) are dramatically different from those for LaNi3. The Mg-containing intermetallics reversibly form hydrides with DHdes = 24.0 kJ/molH2 and an equilibrium pressure of H2 desorption of 18 bar at 20 °C (La1.09Mg1.91Ni9). A pronounced hysteresis of H2 absorption and desorption, ~100 bar, is observed. The studies showed that LaNi5-assisted hydrogenation of MgNi2 in the LaMg2Ni9 hybrid structure takes place. In the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) (a = 5.263/5.212; c = 25.803/25.71 Å) D atoms are accommodated in both Laves and CaCu5-type slabs. In the LaNi5 CaCu5-type layer, D atoms fill three types of interstices; a deformed octahedron [La2Ni4], and [La(Mg)2Ni2] and [Ni4] tetrahedra. The overall chemical compositions can be presented as LaNi5H5.6/5.0 + 2*MgNi2H1.95/2.2 showing that the hydrogenation of the MgNi2 slab proceeds at mild H2/D2 pressure of just 20 bar. A partial filling by D of the four types of the tetrahedral interstices in the MgNi2 slab takes place, including [MgNi3] and [Mg2Ni2] tetrahedra.
ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ILL-ESRF publication... arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3198/pdfData sources: Multidisciplinary Digital Publishing InstituteGriffith University: Griffith Research OnlineArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10072/124971Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu