- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2022 ItalyPublisher:Elsevier BV Andrey A. Kovalev; Dmitriy A. Kovalev; Elena A. Zhuravleva; Inna V. Katraeva; Vladimir Panchenko; Ugo Fiore; Yuri V. Litti;handle: 11386/4780489 , 11367/98110
Abstract Two-stage anaerobic digestion (AD) is a promising method of converting organic waste into clean and sustainable energy. This work aimed to study the efficiency of a two-stage AD system with the production of hydrogen at the first acidogenic stage and methane in an electromethanogenic reactor. Two types of biocathodes based on carbon cloth were used in the electromethanogenic reactor: with and without retention of biomass on the electrode surface. A high applied voltage continuously supplied to the pair of electrodes was automatically maintained at 2.5 V. Hydrogen yield (0.11 NL/g volatile solids (VS)init or 2 mol H2/mol hexose) and hydrogen content in biogas (52%) were relatively high, even despite the extremely low pH (∼4.0). Improved retention of biomass on the surface of the carbon cloth-based biocathode led to greater stability of the AD process (no water electrolysis was observed) and a significant increase in the efficiency of electromethanogenesis, including the methane yield (by 40.5% up to 0.39 NL/g VSinit), volumetric methane production rate (by 38.8% up to 1.16 NL/L/d) and current density (by 233% up to 0.56 A/m2).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.09.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.09.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2022 ItalyPublisher:Elsevier BV Andrey A. Kovalev; Dmitriy A. Kovalev; Elena A. Zhuravleva; Inna V. Katraeva; Vladimir Panchenko; Ugo Fiore; Yuri V. Litti;handle: 11386/4780489 , 11367/98110
Abstract Two-stage anaerobic digestion (AD) is a promising method of converting organic waste into clean and sustainable energy. This work aimed to study the efficiency of a two-stage AD system with the production of hydrogen at the first acidogenic stage and methane in an electromethanogenic reactor. Two types of biocathodes based on carbon cloth were used in the electromethanogenic reactor: with and without retention of biomass on the electrode surface. A high applied voltage continuously supplied to the pair of electrodes was automatically maintained at 2.5 V. Hydrogen yield (0.11 NL/g volatile solids (VS)init or 2 mol H2/mol hexose) and hydrogen content in biogas (52%) were relatively high, even despite the extremely low pH (∼4.0). Improved retention of biomass on the surface of the carbon cloth-based biocathode led to greater stability of the AD process (no water electrolysis was observed) and a significant increase in the efficiency of electromethanogenesis, including the methane yield (by 40.5% up to 0.39 NL/g VSinit), volumetric methane production rate (by 38.8% up to 1.16 NL/L/d) and current density (by 233% up to 0.56 A/m2).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.09.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.09.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu