- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Wiley Authors: Jens Gravesen; Morten Willatzen; Jiajia Shao; Zhong Lin Wang;AbstractA general theoretical analysis of a 3D generic TENG structure is presented. Using a dimensionless formulation, it is demonstrated that the optimal TENG geometry does not depend on the frequency of the moving dielectric but the external ohmic impedance for maximum power output is inversely proportional to the frequency. It is also found that the energy is proportional to the cube of the size of the TENG, the square of the triboelectric charge density σT, and the angular frequency ω of the moving dielectric. In the case of a spherical TENG where the moving dielectric is a sphere and the electrodes are spherical caps on a larger sphere three dimensionless parameters that determine the harvested energy are identified: the ratio between the radii of the two spheres = r/R, the polar angle θ of the two spherical caps formed by the electrodes, and = ZεRω, whereZis the external impedance,Ris the radius of the large sphere, ε is the permittivity of the system, and ω is the angular frequency of the moving sphere. Under the crude assumption of constant charge density on the electrodes, the optimal parameters can be easily calculated. It is found that θ = 1.1 rad, = 0.67, and = 0.18.
Online Research Data... arrow_drop_down Online Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyAdvanced Functional MaterialsArticle . 2022Data sources: University of Southern Denmark Research OutputAdvanced Functional MaterialsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202110516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Online Research Data... arrow_drop_down Online Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyAdvanced Functional MaterialsArticle . 2022Data sources: University of Southern Denmark Research OutputAdvanced Functional MaterialsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202110516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:American Chemical Society (ACS) Ya Yang; Guang Zhu; Zhong Lin Wang; Zhong Lin Wang; Hulin Zhang; Sangmin Lee; Zong-Hong Lin;doi: 10.1021/nn305247x
pmid: 23199138
We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nn305247x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu242 citations 242 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nn305247x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Ying Fang; Hui Wu; Mashkoor Ahmad; Caofeng Pan; Zhong Lin Wang; Xinxu Yan; Jianbo Xie; Qiang Li; Lihua Wu; Jing Zhu; Zhixiang Luo;pmid: 20972979
The goal of nanotechnology is to build nanodevices that are intelligent, multifunctional, exceptionally small, extremely sensitive and have low power consumption. When the nanodevice is required for applications such as in vivo biomedical sensors, a nanoscale power source is required. Although a battery or energy storage unit is a choice for powering nanodevices, harvesting energy from the environment is an essential solution for building a “self-powered” nanodevice/nanosystem, [ 1 , 2 ] which is an integration of nanodevice(s) and nano-enabled energy scavenging technologies. [ 3 ] Previously, nanogenerators (NGs) have been demonstrated that can convert mechanical energy of low (order of Hz) and high (around 50 kHz) frequencies into electricity by means of piezoelectric zinc oxide nanowires (NWs). [ 4–6 ] A single silicon NW-based heterostructure has been used to fabricate solar cells that are effective for driving an NW-based pH sensor or logic gate. [ 2 ] Still, the most abundant energy available in biosystems is chemical and biochemical energy, such as glucose. In this paper, we report an NW-based biofuel cell (NBFC) based on a single proton conductive polymer NW for converting chemical energy from biofl uids, such as glucose/blood, into electricity, using glucose oxidase (GOx) and laccase as catalyst. The glucose is supplied from the biofl uid and the NW serves as the proton conductor. Although the electrolyte solution is a choice for transferring proton, it is essential to develop a proton conductive NW in some cases, such as the case in Figure S3c (see Section III of the Supporting Information (SI)), in which the anode and cathode solution are separated. A net current is generated
Advanced Materials arrow_drop_down Advanced MaterialsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201002519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advanced Materials arrow_drop_down Advanced MaterialsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201002519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Saudi ArabiaPublisher:Elsevier BV Authors: Zhong Lin Wang; Zhong Lin Wang; Jun Chen; Jun Chen;handle: 10754/626081
Summary Vibration energy harvesting and sensing is a traditional and growing research field in which various working mechanisms and designs have been developed for an improved performance. Relying on a coupling effect of contact electrification and electrostatic induction, in the past 5 years, triboelectric nanogenerator (TENG) has been applied as a fundamentally new technology to revive the field of vibration energy harvesting and self-powered sensing, especially for low-frequency vibrations such as human motion, automobile, machine, and bridge vibrations. The demonstrated instantaneous energy conversion efficiency of ∼70% and a total efficiency up to 85% distinguished TENG from traditional techniques. In this article, both TENG-enabled vibration energy harvesting and self-powered active sensing are comprehensively reviewed. Moving toward future development, problems pressing for solutions and onward research directions are also posed to deliver a coherent picture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2017.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 836 citations 836 popularity Top 0.01% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2017.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:American Chemical Society (ACS) Wenjie Mai; Wenhui Zhan; Jian Chen; Weijian Ni; Wen-Chun Yen; Kaifu Huo; Zhong Lin Wang; Yuan Gao; Junwen Zhong; Jun Zhou; Peihua Yang; Xianghui Zhang; Yu-Lun Chueh; Tianqi Li; Li Gong; Yuanzhi Cao; Huanyu Jin; Xu Xiao;doi: 10.1021/nn303530k
pmid: 22978389
All-solid-state flexible supercapacitors based on a carbon/MnO(2) (C/M) core-shell fiber structure were fabricated with high electrochemical performance such as high rate capability with a scan rate up to 20 V s(-1), high volume capacitance of 2.5 F cm(-3), and an energy density of 2.2 × 10(-4) Wh cm(-3). By integrating with a triboelectric generator, supercapacitors could be charged and power commercial electronic devices, such as a liquid crystal display or a light-emitting-diode, demonstrating feasibility as an efficient storage component and self-powered micro/nanosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nn303530k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu589 citations 589 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nn303530k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Zhong Lin Wang;pmid: 22331639
AbstractThe fundamental principle of piezotronics and piezo‐phototronics were introduced by Wang in 2007 and 2010, respectively. Due to the polarization of ions in a crystal that has non‐central symmetry in materials such as the wurtzite structured ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a stress. Owing to the simultaneous possession of piezoelectricity and semiconductor properties, the piezopotential created in the crystal has a strong effect on the carrier transport at the interface/junction. Piezotronics is about the devices fabricated using the piezopotential as a “gate” voltage to tune/control charge carrier transport at a contact or junction. The piezo‐phototronic effect is to use the piezopotential to control the carrier generation, transport, separation and/or recombination for improving the performance of optoelectronic devices, such as photon detector, solar cell and LED. This manuscript reviews the updated progress in the two new fields. A perspective is given about their potential applications in sensors, human‐silicon technology interfacing, MEMS, nanorobotics and energy sciences.
Advanced Materials arrow_drop_down Advanced MaterialsArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201104365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu634 citations 634 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Advanced Materials arrow_drop_down Advanced MaterialsArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201104365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United StatesPublisher:AIP Publishing Lin, Yi-Feng; Song, Jinhui; Ding, Yong; Lu, Shih-Yuan; Wang, Z. L. (Zhong Lin);doi: 10.1063/1.2831901
handle: 1853/27469
Vertically grown cadmium sulfide (CdS) nanowire (NW) arrays were prepared using two different processes: hydrothermal and physical vapor deposition (PVD). The NWs obtained from the hydrothermal process were composed of alternating hexagonal wurtzite (WZ) and cubic zinc blende (ZB) phases with growth direction along WZ ⟨0001⟩ and ZB [111]. The NWs produced by PVD process are single crystalline WZ phase with growth direction along ⟨0001⟩. These vertically grown CdS NW arrays have been used to converting mechanical energy into electricity following a developed procedure [Z. L. Wang and J. Song Science 312, 242 (2006)]. The basic principle of the CdS NW nanogenerator relies on the coupled piezoelectric and semiconducting properties of CdS, and the data fully support the mechanism previously proposed for ZnO NW nanogenerators and nanopiezotronics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.2831901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu276 citations 276 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.2831901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Royal Society of Chemistry (RSC) Long Lin; Simiao Niu; Ying Liu; Yu Sheng Zhou; Zhong Lin Wang; Zhong Lin Wang; Youfan Hu; Sihong Wang;doi: 10.1039/c3ee42571a
A theoretical model for contact-mode TENGs was constructed in this paper. Based on the theoretical model, its real-time output characteristics and the relationship between the optimum resistance and TENG parameters were derived. The theory presented here is the first in-depth interpretation of the contact-mode TENG, which can serve as important guidance for rational design of the TENG structure in specific applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee42571a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,596 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee42571a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 China (People's Republic of)Publisher:Springer Science and Business Media LLC Feiyao Yang; Puguang Peng; Zhao-Yi Yan; Hongzhao Fan; Xiang Li; Shaoxin Li; Houfang Liu; Tian-Ling Ren; Yanguang Zhou; Zhong Lin Wang; Di Wei;Making salinity gradient energy practical is a great challenge. Despite recent advancements, the practicality of osmotic energy for portable electronics remains doubtful due to its limited power output and portability constraints. Here we report a method for optimizing the transport of alkali metal ions within two-dimensional nanofluidic channels and coupling it with tailored interfacial redox reactions to store the osmotic energy in a space of tens of micrometres within the cut edge of a polymer film. An ultrahigh output power density of 15,900 W m−2 has been achieved. By connecting the devices in series, commercial electronics can be powered due to the high volumetric specific energy density (9.46 Wh cm−3) and power density (106.33 W cm−3). This work introduces an approach for storing iontronic energy based on osmotic effects, providing a platform for developing renewable, ultrathin and safe power sources. © 2024, The Author(s), under exclusive licence to Springer Nature Limited.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01431-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01431-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Beilstein Institut Jing Han; Nuo Xu; Yuchen Liang; Mei Ding; Junyi Zhai; Qijun Sun; Zhong Lin Wang;The development of industry and of the Internet of Things (IoTs) have brought energy issues and huge challenges to the environment. The emergence of triboelectric nanogenerators (TENGs) has attracted wide attention due to their advantages, such as self-powering, lightweight, and facile fabrication. Similarly to paper and other fiber-based materials, which are biocompatible, biodegradable, environmentally friendly, and are everywhere in daily life, paper-based TENGs (P-TENGs) have shown great potential for various energy harvesting and interactive applications. Here, a detailed summary of P-TENGs with two-dimensional patterns and three-dimensional structures is reported. P-TENGs have the potential to be used in many practical applications, including self-powered sensing devices, human–machine interaction, electrochemistry, and highly efficient energy harvesting devices. This leads to a simple yet effective way for the next generation of energy devices and paper electronics.
Beilstein Journal of... arrow_drop_down Beilstein Journal of NanotechnologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3762/bjnano.12.12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Beilstein Journal of... arrow_drop_down Beilstein Journal of NanotechnologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3762/bjnano.12.12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Wiley Authors: Jens Gravesen; Morten Willatzen; Jiajia Shao; Zhong Lin Wang;AbstractA general theoretical analysis of a 3D generic TENG structure is presented. Using a dimensionless formulation, it is demonstrated that the optimal TENG geometry does not depend on the frequency of the moving dielectric but the external ohmic impedance for maximum power output is inversely proportional to the frequency. It is also found that the energy is proportional to the cube of the size of the TENG, the square of the triboelectric charge density σT, and the angular frequency ω of the moving dielectric. In the case of a spherical TENG where the moving dielectric is a sphere and the electrodes are spherical caps on a larger sphere three dimensionless parameters that determine the harvested energy are identified: the ratio between the radii of the two spheres = r/R, the polar angle θ of the two spherical caps formed by the electrodes, and = ZεRω, whereZis the external impedance,Ris the radius of the large sphere, ε is the permittivity of the system, and ω is the angular frequency of the moving sphere. Under the crude assumption of constant charge density on the electrodes, the optimal parameters can be easily calculated. It is found that θ = 1.1 rad, = 0.67, and = 0.18.
Online Research Data... arrow_drop_down Online Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyAdvanced Functional MaterialsArticle . 2022Data sources: University of Southern Denmark Research OutputAdvanced Functional MaterialsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202110516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Online Research Data... arrow_drop_down Online Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyAdvanced Functional MaterialsArticle . 2022Data sources: University of Southern Denmark Research OutputAdvanced Functional MaterialsArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202110516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:American Chemical Society (ACS) Ya Yang; Guang Zhu; Zhong Lin Wang; Zhong Lin Wang; Hulin Zhang; Sangmin Lee; Zong-Hong Lin;doi: 10.1021/nn305247x
pmid: 23199138
We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nn305247x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu242 citations 242 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nn305247x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Ying Fang; Hui Wu; Mashkoor Ahmad; Caofeng Pan; Zhong Lin Wang; Xinxu Yan; Jianbo Xie; Qiang Li; Lihua Wu; Jing Zhu; Zhixiang Luo;pmid: 20972979
The goal of nanotechnology is to build nanodevices that are intelligent, multifunctional, exceptionally small, extremely sensitive and have low power consumption. When the nanodevice is required for applications such as in vivo biomedical sensors, a nanoscale power source is required. Although a battery or energy storage unit is a choice for powering nanodevices, harvesting energy from the environment is an essential solution for building a “self-powered” nanodevice/nanosystem, [ 1 , 2 ] which is an integration of nanodevice(s) and nano-enabled energy scavenging technologies. [ 3 ] Previously, nanogenerators (NGs) have been demonstrated that can convert mechanical energy of low (order of Hz) and high (around 50 kHz) frequencies into electricity by means of piezoelectric zinc oxide nanowires (NWs). [ 4–6 ] A single silicon NW-based heterostructure has been used to fabricate solar cells that are effective for driving an NW-based pH sensor or logic gate. [ 2 ] Still, the most abundant energy available in biosystems is chemical and biochemical energy, such as glucose. In this paper, we report an NW-based biofuel cell (NBFC) based on a single proton conductive polymer NW for converting chemical energy from biofl uids, such as glucose/blood, into electricity, using glucose oxidase (GOx) and laccase as catalyst. The glucose is supplied from the biofl uid and the NW serves as the proton conductor. Although the electrolyte solution is a choice for transferring proton, it is essential to develop a proton conductive NW in some cases, such as the case in Figure S3c (see Section III of the Supporting Information (SI)), in which the anode and cathode solution are separated. A net current is generated
Advanced Materials arrow_drop_down Advanced MaterialsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201002519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advanced Materials arrow_drop_down Advanced MaterialsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201002519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Saudi ArabiaPublisher:Elsevier BV Authors: Zhong Lin Wang; Zhong Lin Wang; Jun Chen; Jun Chen;handle: 10754/626081
Summary Vibration energy harvesting and sensing is a traditional and growing research field in which various working mechanisms and designs have been developed for an improved performance. Relying on a coupling effect of contact electrification and electrostatic induction, in the past 5 years, triboelectric nanogenerator (TENG) has been applied as a fundamentally new technology to revive the field of vibration energy harvesting and self-powered sensing, especially for low-frequency vibrations such as human motion, automobile, machine, and bridge vibrations. The demonstrated instantaneous energy conversion efficiency of ∼70% and a total efficiency up to 85% distinguished TENG from traditional techniques. In this article, both TENG-enabled vibration energy harvesting and self-powered active sensing are comprehensively reviewed. Moving toward future development, problems pressing for solutions and onward research directions are also posed to deliver a coherent picture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2017.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 836 citations 836 popularity Top 0.01% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joule.2017.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:American Chemical Society (ACS) Wenjie Mai; Wenhui Zhan; Jian Chen; Weijian Ni; Wen-Chun Yen; Kaifu Huo; Zhong Lin Wang; Yuan Gao; Junwen Zhong; Jun Zhou; Peihua Yang; Xianghui Zhang; Yu-Lun Chueh; Tianqi Li; Li Gong; Yuanzhi Cao; Huanyu Jin; Xu Xiao;doi: 10.1021/nn303530k
pmid: 22978389
All-solid-state flexible supercapacitors based on a carbon/MnO(2) (C/M) core-shell fiber structure were fabricated with high electrochemical performance such as high rate capability with a scan rate up to 20 V s(-1), high volume capacitance of 2.5 F cm(-3), and an energy density of 2.2 × 10(-4) Wh cm(-3). By integrating with a triboelectric generator, supercapacitors could be charged and power commercial electronic devices, such as a liquid crystal display or a light-emitting-diode, demonstrating feasibility as an efficient storage component and self-powered micro/nanosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nn303530k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu589 citations 589 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nn303530k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Zhong Lin Wang;pmid: 22331639
AbstractThe fundamental principle of piezotronics and piezo‐phototronics were introduced by Wang in 2007 and 2010, respectively. Due to the polarization of ions in a crystal that has non‐central symmetry in materials such as the wurtzite structured ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a stress. Owing to the simultaneous possession of piezoelectricity and semiconductor properties, the piezopotential created in the crystal has a strong effect on the carrier transport at the interface/junction. Piezotronics is about the devices fabricated using the piezopotential as a “gate” voltage to tune/control charge carrier transport at a contact or junction. The piezo‐phototronic effect is to use the piezopotential to control the carrier generation, transport, separation and/or recombination for improving the performance of optoelectronic devices, such as photon detector, solar cell and LED. This manuscript reviews the updated progress in the two new fields. A perspective is given about their potential applications in sensors, human‐silicon technology interfacing, MEMS, nanorobotics and energy sciences.
Advanced Materials arrow_drop_down Advanced MaterialsArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201104365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu634 citations 634 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Advanced Materials arrow_drop_down Advanced MaterialsArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.201104365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United StatesPublisher:AIP Publishing Lin, Yi-Feng; Song, Jinhui; Ding, Yong; Lu, Shih-Yuan; Wang, Z. L. (Zhong Lin);doi: 10.1063/1.2831901
handle: 1853/27469
Vertically grown cadmium sulfide (CdS) nanowire (NW) arrays were prepared using two different processes: hydrothermal and physical vapor deposition (PVD). The NWs obtained from the hydrothermal process were composed of alternating hexagonal wurtzite (WZ) and cubic zinc blende (ZB) phases with growth direction along WZ ⟨0001⟩ and ZB [111]. The NWs produced by PVD process are single crystalline WZ phase with growth direction along ⟨0001⟩. These vertically grown CdS NW arrays have been used to converting mechanical energy into electricity following a developed procedure [Z. L. Wang and J. Song Science 312, 242 (2006)]. The basic principle of the CdS NW nanogenerator relies on the coupled piezoelectric and semiconducting properties of CdS, and the data fully support the mechanism previously proposed for ZnO NW nanogenerators and nanopiezotronics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.2831901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu276 citations 276 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.2831901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Royal Society of Chemistry (RSC) Long Lin; Simiao Niu; Ying Liu; Yu Sheng Zhou; Zhong Lin Wang; Zhong Lin Wang; Youfan Hu; Sihong Wang;doi: 10.1039/c3ee42571a
A theoretical model for contact-mode TENGs was constructed in this paper. Based on the theoretical model, its real-time output characteristics and the relationship between the optimum resistance and TENG parameters were derived. The theory presented here is the first in-depth interpretation of the contact-mode TENG, which can serve as important guidance for rational design of the TENG structure in specific applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee42571a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,596 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee42571a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 China (People's Republic of)Publisher:Springer Science and Business Media LLC Feiyao Yang; Puguang Peng; Zhao-Yi Yan; Hongzhao Fan; Xiang Li; Shaoxin Li; Houfang Liu; Tian-Ling Ren; Yanguang Zhou; Zhong Lin Wang; Di Wei;Making salinity gradient energy practical is a great challenge. Despite recent advancements, the practicality of osmotic energy for portable electronics remains doubtful due to its limited power output and portability constraints. Here we report a method for optimizing the transport of alkali metal ions within two-dimensional nanofluidic channels and coupling it with tailored interfacial redox reactions to store the osmotic energy in a space of tens of micrometres within the cut edge of a polymer film. An ultrahigh output power density of 15,900 W m−2 has been achieved. By connecting the devices in series, commercial electronics can be powered due to the high volumetric specific energy density (9.46 Wh cm−3) and power density (106.33 W cm−3). This work introduces an approach for storing iontronic energy based on osmotic effects, providing a platform for developing renewable, ultrathin and safe power sources. © 2024, The Author(s), under exclusive licence to Springer Nature Limited.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01431-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-023-01431-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Beilstein Institut Jing Han; Nuo Xu; Yuchen Liang; Mei Ding; Junyi Zhai; Qijun Sun; Zhong Lin Wang;The development of industry and of the Internet of Things (IoTs) have brought energy issues and huge challenges to the environment. The emergence of triboelectric nanogenerators (TENGs) has attracted wide attention due to their advantages, such as self-powering, lightweight, and facile fabrication. Similarly to paper and other fiber-based materials, which are biocompatible, biodegradable, environmentally friendly, and are everywhere in daily life, paper-based TENGs (P-TENGs) have shown great potential for various energy harvesting and interactive applications. Here, a detailed summary of P-TENGs with two-dimensional patterns and three-dimensional structures is reported. P-TENGs have the potential to be used in many practical applications, including self-powered sensing devices, human–machine interaction, electrochemistry, and highly efficient energy harvesting devices. This leads to a simple yet effective way for the next generation of energy devices and paper electronics.
Beilstein Journal of... arrow_drop_down Beilstein Journal of NanotechnologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3762/bjnano.12.12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Beilstein Journal of... arrow_drop_down Beilstein Journal of NanotechnologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3762/bjnano.12.12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu