- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Data Paper 2020Embargo end date: 09 Jul 2020 Germany, Italy, Denmark, Italy, Italy, Australia, Germany, Germany, Belgium, Australia, Italy, Netherlands, Belgium, Italy, Australia, Italy, Russian Federation, Germany, Czech Republic, Germany, Italy, Australia, Netherlands, Australia, Switzerland, Italy, Australia, Germany, Netherlands, Norway, Germany, Australia, Australia, Italy, Finland, Sweden, Czech Republic, France, Spain, Denmark, Netherlands, Finland, United StatesPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAndreas Ibrom; Bruno De Cinti; Jean Marc Ourcival; Vincenzo Magliulo; Onil Bergeron; M. Altaf Arain; Andrew Feitz; Zulia Mayari Sanchez-Mejia; Christof Ammann; Yann Nouvellon; Siyan Ma; Brian D. Amiro; Kim Pilegaard; Eddy Moors; Michele Tomassucci; Asko Noormets; Shawn Urbanski; Damiano Gianelle; Anatoly A. Gitelson; E. Canfora; You Wei Cheah; Ko van Huissteden; Shicheng Jiang; Hans Peter Schmid; Albin Hammerle; Brent E. Ewers; Virginie Moreaux; Housen Chu; Anne Griebel; Timothy J. Arkebauer; Peter Cale; Barbara Marcolla; Alan G. Barr; Alan G. Barr; Scott D. Miller; Lutz Merbold; Ivan Schroder; Joseph Verfaillie; Stefan K. Arndt; Scott R. Saleska; Nicolas Delpierre; Catharine van Ingen; Christine Moureaux; Annalea Lohila; Annalea Lohila; Gabriela Posse; Bernard Heinesch; Pierpaolo Duce; Raimundo Cosme de Oliveira; Kenneth J. Davis; Markus Hehn; Torben R. Christensen; Tilden P. Meyers; Werner L. Kutsch; Lindsay B. Hutley; Üllar Rannik; W.W.P. Jans; Riccardo Valentini; Myroslava Khomik; Myroslava Khomik; Pierre Cellier; Ayumi Kotani; Xiaoqin Dai; Marta Galvagno; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Eric Dufrêne; Marius Schmidt; Birger Ulf Hansen; Alessio Collalti; Alessio Collalti; Ivan Shironya; Christian Brümmer; Russell L. Scott; Serge Rambal; Jonas Ardö; Natalia Restrepo-Coupe; Donatella Zona; Elizabeth A. Walter-Shea; Russell K. Monson; Silvano Fares; Sean P. Burns; Sean P. Burns; Mauro Cavagna; Guoyi Zhou; Suzanne M. Prober; Juha Pekka Tuovinen; Georgia R. Koerber; Yuelin Li; Alexander Knohl; Mikhail Mastepanov; Mikhail Mastepanov; Yanhong Tang; Johan Neirynck; Matthew Northwood; Pauline Buysse; Thomas Grünwald; Sabina Dore; N. Pirk; N. Pirk; Hiroki Ikawa; Craig Macfarlane; Jean-Marc Limousin; Carlos Marcelo Di Bella; Leiming Zhang; Juha Hatakka; Margaret S. Torn; Mika Aurela; Bert Gielen; Jiquan Chen; Regine Maier; Karl Schneider; Christian Wille; Nina Buchmann; Daniel Berveiller; Peter D. Blanken; Wayne S. Meyer; Dennis D. Baldocchi; Benjamin Loubet; Giovanni Manca; Hatim Abdalla M. ElKhidir; James Cleverly; Harry McCaughey; Agnès de Grandcourt; Matthias Peichl; Adam J. Liska; Jonathan E. Thom; Christian Bernhofer; Jean Marc Bonnefond; Alexander Graf; Roser Matamala; M. Goeckede; Marian Pavelka; Hank A. Margolis; Eugénie Paul-Limoges; Andrew S. Kowalski; Taro Nakai; Taro Nakai; Marcelo D. Nosetto; Tomomichi Kato; Ray Leuning; Beniamino Gioli; Marc Aubinet; Tuomas Laurila; Andrej Varlagin; Ignacio Goded; David R. Bowling; Nigel J. Tapper; Ana López-Ballesteros; Denis Loustau; Iris Feigenwinter; Uta Moderow; Edoardo Cremonese; Gianluca Filippa; Domenico Vitale; Abdelrahman Elbashandy; Gilberto Pastorello; Ettore D'Andrea; Gil Bohrer; Thomas L. Powell; Serena Marras; Daniela Famulari; Christopher M. Gough; Enrique P. Sánchez-Cañete; Satoru Takanashi; Michael J. Liddell; Jason Brodeur; Marc Fischer; Zoran Nesic; William J. Massman; Janina Klatt; Samuli Launiainen; Anne De Ligne; Leonardo Montagnani; Sebastian Wolf; Rainer Steinbrecher; Yingnian Li; Donatella Spano; A. Ribeca; Rosvel Bracho; Walter C. Oechel; B.R. Reverter; Jiří Dušek; Sebastian Westermann; Rachhpal S. Jassal; Derek Eamus; Claudia Consalvo; Claudia Consalvo; Marty Humphrey; Timo Vesala; Cristina Poindexter; Jeffrey P. Walker; Humberto Ribeiro da Rocha; Paul V. Bolstad; Elise Pendall; Diego Polidori; Peter S. Curtis; Chad Hanson; Francisco Domingo; Jason Beringer;pmid: 32647314
pmc: PMC7347557
AbstractThe FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81470Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2xf0f1djData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2020Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsGFZ German Research Centre for GeosciencesArticle . 2020License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 896 citations 896 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81470Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2xf0f1djData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2020Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsGFZ German Research Centre for GeosciencesArticle . 2020License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Sweden, Norway, DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | GREENCYCLESII, EC | INTERACT, EC | PAGE21EC| GREENCYCLESII ,EC| INTERACT ,EC| PAGE21Pirk, Norbert; Mastepanov, Mikhail; López-Blanco, Efrén; Christensen, Louise; Christiansen, Hanne Hvidtfeldt; Hansen, Birger; Lund, Magnus; Parmentier, Frans Jan W.; Skov, Kirstine; Christensen, Torben R.;Methane (CH4) emissions from arctic tundra typically follow relations with soil temperature and water table depth, but these process-based descriptions can be difficult to apply to areas where no measurements exist. We formulated a description of the broader temporal flux pattern in the growing season based on two distinct CH4 source components from slow and fast-turnover carbon. We used automatic closed chamber flux measurements from NE Greenland (74°N), W Greenland (64°N), and Svalbard (78°N) to identify and discuss these components. The temporal separation was well-suited in NE Greenland, where the hypothesized slow-turnover carbon peaked at a time significantly related to the timing of snowmelt. The temporally wider component from fast-turnover carbon dominated the emissions in W Greenland and Svalbard. Altogether, we found no dependence of the total seasonal CH4 budget to the timing of snowmelt, and warmer sites and years tended to yield higher CH4 emissions.
AMBIO arrow_drop_down Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0893-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert AMBIO arrow_drop_down Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0893-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Netherlands, United Kingdom, Denmark, Germany, Finland, Switzerland, United Kingdom, Norway, Sweden, France, Germany, United KingdomPublisher:Springer Science and Business Media LLC Funded by:RCN | Winter-proofing land surf..., EC | CHARTER, SNSF | FutureWeb +7 projectsRCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,EC| CHARTER ,SNSF| FutureWeb ,NSF| Collaborative Research: Tracking Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| Collaborative Research: Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| Automated, High Resolution Terrain Generation for XSEDE ,RCN| Upscaling hotspots - understanding the variability of critical land-atmosphere fluxes to strengthen climate models ,NSF| The Polar Geospatial Information Center: Joint Support ,SNSF| FeedBaCks: Feedbacks between Biodiversity and Climate ,SNSF| Arctic Tundra Surface Energy Budget - assessing the status and informing predictionsOehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter; Dean, Joshua; Di Sarra, Alcide; Harding, Richard; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul; Sullivan, Ryan; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk; Quinton, William; Putkonen, Jaakko; van As, Dirk; Christensen, Torben; Hakuba, Maria; Stone, Robert; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald; Wild, Martin; Hansen, Birger; Meloni, Daniela; Domine, Florent; Te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian; Williamson, Scott; Morris, Sara; Atchley, Adam; Essery, Richard; Runkle, Benjamin; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward; Cox, Christopher; Grachev, Andrey; Mcfadden, Joseph; Fausto, Robert; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M. Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin; Olofsson, Johan; Chambers, Scott;pmid: 36316310
pmc: PMC9622844
AbstractDespite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
NERC Open Research A... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/99980Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/99980Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Sweden, DenmarkPublisher:Elsevier BV Funded by:EC | PAGE21EC| PAGE21Tagesson, Håkon Torbern; Mastepanov, Mikhail; Tamstorf, Mikkel; Eklundh, Lars; Per, Schubert; Ekberg, Anna; Sigsgaard, Charlotte; Christensen, Torben; Strøm, Lena;Arctic ecosystems play a key role in the terrestrial carbon cycle. Our aim was to combine satellite-based normalized difference vegetation index (NDVI) with field measurements of CO2 fluxes to investigate changes in gross primary production (GPP) for the peak growing seasons 1992-2008 in Rylekaerene, a wet tundra ecosystem in the Zackenberg valley, north-eastern Greenland. A method to incorporate controls on GPP through satellite data is the light use efficiency (LUE) model, here expressed as GPP = epsilon(peak) x PAR(in) x FAPAR(green_peak); where epsilon(peak) was peak growing season light use efficiency of the vegetation, PARin was incoming photosynthetically active radiation, and FAPAR(green_peak) was peak growing season fraction of PAR absorbed by the green vegetation. The Speak was measured for seven different high-Arctic plant communities in the field, and it was on average 1.63 g CO2 MJ(-1). We found a significant linear relationship between FAPARgreen_peak measured in the field and satellite-based NDVI. The linear regression was applied to peak growing season NDVI 1992-2008 and derived FAPAR(green_peak) was entered into the LUE-model. It was shown that when several empirical models are combined, propagation errors are introduced, which results in considerable model uncertainties. The LUE-model was evaluated against field-measured GPP and the model captured field-measured GPP well (RMSE was 192 mg CO2 m(-2) h(-1)). The model showed an increase in peak growing season GPP of 42 mg CO2 m(-2) h(-1) y(-1) in Rylekaerene 1992-2008. There was also a strong increase in air temperature (0.15 degrees C y(-1)), indicating that the GPP trend may have been climate driven. (C) 2012 Elsevier B.V. All rights reserved. (Less)
International Journa... arrow_drop_down International Journal of Applied Earth Observation and GeoinformationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Applied Earth Observation and GeoinformationArticleData sources: UnpayWallUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.ja...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jag.2012.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Applied Earth Observation and GeoinformationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Applied Earth Observation and GeoinformationArticleData sources: UnpayWallUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.ja...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jag.2012.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection , Dataset , Other dataset type 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In-situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. Therefore, we here provide four datasets comprising:1. Harmonized, standardized and aggregated in situ observations of SEB components at 64 vegetated and glaciated sites north of 60° latitude, in the time period 1994-20212. A description of all study sites and associated environmental conditions, including the vegetation types, which correspond to the classification of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019).3. Data generated in a literature synthesis from 358 study sites on vegetation or glacier (>=60°N latitude) covered by 148 publications.4. Metadata, including data contributor information and measurement heights of variables associated with Oehri et al. 2022. Code underlying the dataset and publication is available in a Github repository and can be accessed at: https://github.com/oehrij/ArcticSEBSynthesis
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;List of Ameriflux, AON and FLUXNET sites contained in this dataset and their corresponding siteid's and doi's: CA-SCB (https://doi.org/10.17190/AMF/1498754), FI-Lom (https://doi.org/10.18140/FLX/1440228), GL-NuF (https://doi.org/10.18140/FLX/1440222), GL-ZaF (https://doi.org/10.18140/FLX/1440223), GL-ZaH (https://doi.org/10.18140/FLX/1440224), RU-Che (https://doi.org/10.18140/FLX/1440181), RU-Cok (https://doi.org/10.18140/FLX/1440182), RU-Sam (https://doi.org/10.18140/FLX/1440185), RU-Tks (https://doi.org/10.18140/FLX/1440244), RU-Vrk (https://doi.org/10.18140/FLX/1440245), SE-St1 (https://doi.org/10.18140/FLX/1440187), SJ-Adv (https://doi.org/10.18140/FLX/1440241), SJ-Blv (https://doi.org/10.18140/FLX/1440242), US-A03 (https://doi.org/10.17190/AMF/1498752), US-A10 (https://doi.org/10.17190/AMF/1498753), US-An1 (https://doi.org/10.17190/AMF/1246142), US-An2 (https://doi.org/10.17190/AMF/1246143), US-An3 (https://doi.org/10.17190/AMF/1246144), US-Atq (https://doi.org/10.17190/AMF/1246029), US-Brw (https://doi.org/10.17190/AMF/1246041), US-EML (https://doi.org/10.17190/AMF/1418678), US-HVa (https://doi.org/10.17190/AMF/1246064), US-ICh (https://doi.org/10.17190/AMF/1246133), US-ICs (https://doi.org/10.17190/AMF/1246130), US-ICt (https://doi.org/10.17190/AMF/1246131), US-Ivo (https://doi.org/10.17190/AMF/1246067), US-NGB (https://doi.org/10.17190/AMF/1436326), US-Upa (https://doi.org/10.17190/AMF/1246108), US-xHE (https://doi.org/10.17190/AMF/1617729), US-xTL (https://doi.org/10.17190/AMF/1617739). Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models.This dataset contains metadata information about surface energy budget components measured at 64 tundra and glacier sites >60° N across the Arctic. This information was taken from the open-access repositories FLUXNET, Ameriflux, AON, GC-Net and PROMICE. The contained datasets are associated with the publication vegetation type as an important predictor of the Arctic Summer Land Surface Energy Budget by Oehri et al. 2022, and intended to support research of surface energy budgets and their relationship with environmental conditions, in particular vegetation characteristics across the terrestrial Arctic.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Denmark, GermanyPublisher:Stockholm University Press Authors: Stiegler, Christian; Johansson, Margareta; Christensen, Torben R; Mastepanov, Mikhail; +1 AuthorsStiegler, Christian; Johansson, Margareta; Christensen, Torben R; Mastepanov, Mikhail; Lindroth, Anders;Permafrost, a key component of the arctic and global climate system, is highly sensitive to climate change. Observed and ongoing permafrost degradation influences arctic hydrology, ecology and biogeochemistry, and models predict that rapid warming is expected to significantly reduce near-surface permafrost and seasonally frozen ground during the 21st century. These changes raise concern of how permafrost thaw affects the exchange of water and energy with the atmosphere. However, associated impacts of permafrost thaw on the surface energy balance and possible feedbacks on the climate system are largely unknown. In this study, we show that in northern subarctic Sweden, permafrost thaw and related degradation of peat plateaus significantly change the surface energy balance of three peatland complexes by enhancing latent heat flux and, to less degree, also ground heat flux at the cost of sensible heat flux. This effect is valid at all radiation levels but more pronounced at higher radiation levels. The observed differences in flux partitioning mainly result from the strong coupling between soil moisture availability, vegetation composition, albedo and surface structure. Our results suggest that ongoing and predicted permafrost degradation in northern subarctic Sweden ultimately result in changes in land–atmosphere coupling due to changes in the partitioning between latent and sensible heat fluxes. This in turn has crucial implications for how predictive climate models for the Arctic are further developed.Keywords: permafrost degradation, subarctic peatlands, surface energy balance, climate change, land–atmosphere coupling(Published: 5 April 2016)Citation: Tellus B 2016, 68, 30467, http://dx.doi.org/10.3402/tellusb.v68.30467
Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2016Data sources: Co-Action PublishingTellus: Series B, Chemical and Physical MeteorologyArticle . 2016 . Peer-reviewedData sources: CrossrefTellus: Series B, Chemical and Physical MeteorologyArticleLicense: CC BY NCData sources: UnpayWallPublikationenserver der Georg-August-Universität GöttingenArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3402/tellusb.v68.30467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2016Data sources: Co-Action PublishingTellus: Series B, Chemical and Physical MeteorologyArticle . 2016 . Peer-reviewedData sources: CrossrefTellus: Series B, Chemical and Physical MeteorologyArticleLicense: CC BY NCData sources: UnpayWallPublikationenserver der Georg-August-Universität GöttingenArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3402/tellusb.v68.30467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:IOP Publishing Funded by:EC | GreenFeedBackEC| GreenFeedBackShannon L Speir; Jennifer L Tank; Ada Pastor; Marc F Muller; Mikhail Mastepanov; Tenna Riis;Abstract Climate change is expected to alter nitrogen (N) export from Arctic rivers, with potential implications for fragile coastal ecosystems and fisheries. Yet, the directionality of change is poorly understood, as increased mobilization of N in a ‘thawing’ Arctic is countered by higher rates of vegetative uptake in a ‘greening’ Arctic, particularly in the understudied region of Greenland. We use an unprecedented dataset of long-term (n = 18 years) river chemistry, streamflow, and catchment-scale changes in snow and vegetation to document changing riverine N loss in Greenland. We documented decreasing inorganic and organic N loads, linked to decreasing snow stores, warming soils, and enhanced plant uptake. Higher variability in N export across years also points to the increasing role of high flow events in driving downstream N loss. This alteration in N cycling may significantly reduce both inorganic and organic N transport across the terrestrial-aquatic boundary during the open water season in a rapidly warming Greenland.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad3e8e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad3e8e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models.This dataset describes the data generated in a literature synthesis, covering 358 study sites on vegetation or glacier (>=60°N latitude), which contained surface energy budget observations. The literature synthesis comprised 148 publications searched on the ISI Web of Science Core Collection.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Finland, GermanyPublisher:Wiley Funded by:AKA | Mechanisms underlying lar...AKA| Mechanisms underlying large N2O emissions from cryoturbated peat soil in tundraCarolina Voigt; Carolina Voigt; Timo Oksanen; Claire C. Treat; Annalea Lohila; Torben R. Christensen; Torben R. Christensen; Richard E. Lamprecht; Mikhail Mastepanov; Mikhail Mastepanov; Marcin Jackowicz-Korczynski; Marcin Jackowicz-Korczynski; Pertti J. Martikainen; Hannu Nykänen; Markku Oinonen; V. Palonen; Maxim Dorodnikov; Maija E. Marushchak; Maija E. Marushchak; Christina Biasi; Amelie Lindgren; Amelie Lindgren;doi: 10.1111/gcb.14574
pmid: 30681758
AbstractPermafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near‐natural conditions. We monitored GHG flux dynamics via high‐resolution flow‐through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2–C m−2 day−1; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2–C m−2 day−1, mean ± SD, pre‐ and post‐thaw, respectively). Radiocarbon dating (14C) of respired CO2, supported by an independent curve‐fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post‐thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO2 burden post‐thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre‐ and post‐thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.
UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2019Full-Text: http://dx.doi.org/10.1111/gcb.14574Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2020Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2019Full-Text: http://dx.doi.org/10.1111/gcb.14574Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2020Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Data Paper 2020Embargo end date: 09 Jul 2020 Germany, Italy, Denmark, Italy, Italy, Australia, Germany, Germany, Belgium, Australia, Italy, Netherlands, Belgium, Italy, Australia, Italy, Russian Federation, Germany, Czech Republic, Germany, Italy, Australia, Netherlands, Australia, Switzerland, Italy, Australia, Germany, Netherlands, Norway, Germany, Australia, Australia, Italy, Finland, Sweden, Czech Republic, France, Spain, Denmark, Netherlands, Finland, United StatesPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAndreas Ibrom; Bruno De Cinti; Jean Marc Ourcival; Vincenzo Magliulo; Onil Bergeron; M. Altaf Arain; Andrew Feitz; Zulia Mayari Sanchez-Mejia; Christof Ammann; Yann Nouvellon; Siyan Ma; Brian D. Amiro; Kim Pilegaard; Eddy Moors; Michele Tomassucci; Asko Noormets; Shawn Urbanski; Damiano Gianelle; Anatoly A. Gitelson; E. Canfora; You Wei Cheah; Ko van Huissteden; Shicheng Jiang; Hans Peter Schmid; Albin Hammerle; Brent E. Ewers; Virginie Moreaux; Housen Chu; Anne Griebel; Timothy J. Arkebauer; Peter Cale; Barbara Marcolla; Alan G. Barr; Alan G. Barr; Scott D. Miller; Lutz Merbold; Ivan Schroder; Joseph Verfaillie; Stefan K. Arndt; Scott R. Saleska; Nicolas Delpierre; Catharine van Ingen; Christine Moureaux; Annalea Lohila; Annalea Lohila; Gabriela Posse; Bernard Heinesch; Pierpaolo Duce; Raimundo Cosme de Oliveira; Kenneth J. Davis; Markus Hehn; Torben R. Christensen; Tilden P. Meyers; Werner L. Kutsch; Lindsay B. Hutley; Üllar Rannik; W.W.P. Jans; Riccardo Valentini; Myroslava Khomik; Myroslava Khomik; Pierre Cellier; Ayumi Kotani; Xiaoqin Dai; Marta Galvagno; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Eric Dufrêne; Marius Schmidt; Birger Ulf Hansen; Alessio Collalti; Alessio Collalti; Ivan Shironya; Christian Brümmer; Russell L. Scott; Serge Rambal; Jonas Ardö; Natalia Restrepo-Coupe; Donatella Zona; Elizabeth A. Walter-Shea; Russell K. Monson; Silvano Fares; Sean P. Burns; Sean P. Burns; Mauro Cavagna; Guoyi Zhou; Suzanne M. Prober; Juha Pekka Tuovinen; Georgia R. Koerber; Yuelin Li; Alexander Knohl; Mikhail Mastepanov; Mikhail Mastepanov; Yanhong Tang; Johan Neirynck; Matthew Northwood; Pauline Buysse; Thomas Grünwald; Sabina Dore; N. Pirk; N. Pirk; Hiroki Ikawa; Craig Macfarlane; Jean-Marc Limousin; Carlos Marcelo Di Bella; Leiming Zhang; Juha Hatakka; Margaret S. Torn; Mika Aurela; Bert Gielen; Jiquan Chen; Regine Maier; Karl Schneider; Christian Wille; Nina Buchmann; Daniel Berveiller; Peter D. Blanken; Wayne S. Meyer; Dennis D. Baldocchi; Benjamin Loubet; Giovanni Manca; Hatim Abdalla M. ElKhidir; James Cleverly; Harry McCaughey; Agnès de Grandcourt; Matthias Peichl; Adam J. Liska; Jonathan E. Thom; Christian Bernhofer; Jean Marc Bonnefond; Alexander Graf; Roser Matamala; M. Goeckede; Marian Pavelka; Hank A. Margolis; Eugénie Paul-Limoges; Andrew S. Kowalski; Taro Nakai; Taro Nakai; Marcelo D. Nosetto; Tomomichi Kato; Ray Leuning; Beniamino Gioli; Marc Aubinet; Tuomas Laurila; Andrej Varlagin; Ignacio Goded; David R. Bowling; Nigel J. Tapper; Ana López-Ballesteros; Denis Loustau; Iris Feigenwinter; Uta Moderow; Edoardo Cremonese; Gianluca Filippa; Domenico Vitale; Abdelrahman Elbashandy; Gilberto Pastorello; Ettore D'Andrea; Gil Bohrer; Thomas L. Powell; Serena Marras; Daniela Famulari; Christopher M. Gough; Enrique P. Sánchez-Cañete; Satoru Takanashi; Michael J. Liddell; Jason Brodeur; Marc Fischer; Zoran Nesic; William J. Massman; Janina Klatt; Samuli Launiainen; Anne De Ligne; Leonardo Montagnani; Sebastian Wolf; Rainer Steinbrecher; Yingnian Li; Donatella Spano; A. Ribeca; Rosvel Bracho; Walter C. Oechel; B.R. Reverter; Jiří Dušek; Sebastian Westermann; Rachhpal S. Jassal; Derek Eamus; Claudia Consalvo; Claudia Consalvo; Marty Humphrey; Timo Vesala; Cristina Poindexter; Jeffrey P. Walker; Humberto Ribeiro da Rocha; Paul V. Bolstad; Elise Pendall; Diego Polidori; Peter S. Curtis; Chad Hanson; Francisco Domingo; Jason Beringer;pmid: 32647314
pmc: PMC7347557
AbstractThe FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81470Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2xf0f1djData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2020Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsGFZ German Research Centre for GeosciencesArticle . 2020License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 896 citations 896 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81470Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Full-Text: https://doi.org/10.6084/m9.figshare.12295910Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2xf0f1djData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAScientific DataArticle . 2020Online Research Database In TechnologyArticle . 2020Data sources: Online Research Database In TechnologyHELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2021Institutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2021Data sources: Göttingen Research Online PublicationsGFZ German Research Centre for GeosciencesArticle . 2020License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Sweden, Norway, DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | GREENCYCLESII, EC | INTERACT, EC | PAGE21EC| GREENCYCLESII ,EC| INTERACT ,EC| PAGE21Pirk, Norbert; Mastepanov, Mikhail; López-Blanco, Efrén; Christensen, Louise; Christiansen, Hanne Hvidtfeldt; Hansen, Birger; Lund, Magnus; Parmentier, Frans Jan W.; Skov, Kirstine; Christensen, Torben R.;Methane (CH4) emissions from arctic tundra typically follow relations with soil temperature and water table depth, but these process-based descriptions can be difficult to apply to areas where no measurements exist. We formulated a description of the broader temporal flux pattern in the growing season based on two distinct CH4 source components from slow and fast-turnover carbon. We used automatic closed chamber flux measurements from NE Greenland (74°N), W Greenland (64°N), and Svalbard (78°N) to identify and discuss these components. The temporal separation was well-suited in NE Greenland, where the hypothesized slow-turnover carbon peaked at a time significantly related to the timing of snowmelt. The temporally wider component from fast-turnover carbon dominated the emissions in W Greenland and Svalbard. Altogether, we found no dependence of the total seasonal CH4 budget to the timing of snowmelt, and warmer sites and years tended to yield higher CH4 emissions.
AMBIO arrow_drop_down Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0893-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert AMBIO arrow_drop_down Copenhagen University Research Information SystemArticle . 2017Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0893-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Netherlands, United Kingdom, Denmark, Germany, Finland, Switzerland, United Kingdom, Norway, Sweden, France, Germany, United KingdomPublisher:Springer Science and Business Media LLC Funded by:RCN | Winter-proofing land surf..., EC | CHARTER, SNSF | FutureWeb +7 projectsRCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,EC| CHARTER ,SNSF| FutureWeb ,NSF| Collaborative Research: Tracking Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| Collaborative Research: Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| Automated, High Resolution Terrain Generation for XSEDE ,RCN| Upscaling hotspots - understanding the variability of critical land-atmosphere fluxes to strengthen climate models ,NSF| The Polar Geospatial Information Center: Joint Support ,SNSF| FeedBaCks: Feedbacks between Biodiversity and Climate ,SNSF| Arctic Tundra Surface Energy Budget - assessing the status and informing predictionsOehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter; Dean, Joshua; Di Sarra, Alcide; Harding, Richard; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul; Sullivan, Ryan; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk; Quinton, William; Putkonen, Jaakko; van As, Dirk; Christensen, Torben; Hakuba, Maria; Stone, Robert; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald; Wild, Martin; Hansen, Birger; Meloni, Daniela; Domine, Florent; Te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian; Williamson, Scott; Morris, Sara; Atchley, Adam; Essery, Richard; Runkle, Benjamin; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward; Cox, Christopher; Grachev, Andrey; Mcfadden, Joseph; Fausto, Robert; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M. Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin; Olofsson, Johan; Chambers, Scott;pmid: 36316310
pmc: PMC9622844
AbstractDespite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
NERC Open Research A... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/99980Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BYFull-Text: http://hdl.handle.net/10852/99980Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03870789Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-34049-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 Sweden, DenmarkPublisher:Elsevier BV Funded by:EC | PAGE21EC| PAGE21Tagesson, Håkon Torbern; Mastepanov, Mikhail; Tamstorf, Mikkel; Eklundh, Lars; Per, Schubert; Ekberg, Anna; Sigsgaard, Charlotte; Christensen, Torben; Strøm, Lena;Arctic ecosystems play a key role in the terrestrial carbon cycle. Our aim was to combine satellite-based normalized difference vegetation index (NDVI) with field measurements of CO2 fluxes to investigate changes in gross primary production (GPP) for the peak growing seasons 1992-2008 in Rylekaerene, a wet tundra ecosystem in the Zackenberg valley, north-eastern Greenland. A method to incorporate controls on GPP through satellite data is the light use efficiency (LUE) model, here expressed as GPP = epsilon(peak) x PAR(in) x FAPAR(green_peak); where epsilon(peak) was peak growing season light use efficiency of the vegetation, PARin was incoming photosynthetically active radiation, and FAPAR(green_peak) was peak growing season fraction of PAR absorbed by the green vegetation. The Speak was measured for seven different high-Arctic plant communities in the field, and it was on average 1.63 g CO2 MJ(-1). We found a significant linear relationship between FAPARgreen_peak measured in the field and satellite-based NDVI. The linear regression was applied to peak growing season NDVI 1992-2008 and derived FAPAR(green_peak) was entered into the LUE-model. It was shown that when several empirical models are combined, propagation errors are introduced, which results in considerable model uncertainties. The LUE-model was evaluated against field-measured GPP and the model captured field-measured GPP well (RMSE was 192 mg CO2 m(-2) h(-1)). The model showed an increase in peak growing season GPP of 42 mg CO2 m(-2) h(-1) y(-1) in Rylekaerene 1992-2008. There was also a strong increase in air temperature (0.15 degrees C y(-1)), indicating that the GPP trend may have been climate driven. (C) 2012 Elsevier B.V. All rights reserved. (Less)
International Journa... arrow_drop_down International Journal of Applied Earth Observation and GeoinformationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Applied Earth Observation and GeoinformationArticleData sources: UnpayWallUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.ja...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jag.2012.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Applied Earth Observation and GeoinformationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Applied Earth Observation and GeoinformationArticleData sources: UnpayWallUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1016/j.ja...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jag.2012.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection , Dataset , Other dataset type 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In-situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. Therefore, we here provide four datasets comprising:1. Harmonized, standardized and aggregated in situ observations of SEB components at 64 vegetated and glaciated sites north of 60° latitude, in the time period 1994-20212. A description of all study sites and associated environmental conditions, including the vegetation types, which correspond to the classification of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019).3. Data generated in a literature synthesis from 358 study sites on vegetation or glacier (>=60°N latitude) covered by 148 publications.4. Metadata, including data contributor information and measurement heights of variables associated with Oehri et al. 2022. Code underlying the dataset and publication is available in a Github repository and can be accessed at: https://github.com/oehrij/ArcticSEBSynthesis
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;List of Ameriflux, AON and FLUXNET sites contained in this dataset and their corresponding siteid's and doi's: CA-SCB (https://doi.org/10.17190/AMF/1498754), FI-Lom (https://doi.org/10.18140/FLX/1440228), GL-NuF (https://doi.org/10.18140/FLX/1440222), GL-ZaF (https://doi.org/10.18140/FLX/1440223), GL-ZaH (https://doi.org/10.18140/FLX/1440224), RU-Che (https://doi.org/10.18140/FLX/1440181), RU-Cok (https://doi.org/10.18140/FLX/1440182), RU-Sam (https://doi.org/10.18140/FLX/1440185), RU-Tks (https://doi.org/10.18140/FLX/1440244), RU-Vrk (https://doi.org/10.18140/FLX/1440245), SE-St1 (https://doi.org/10.18140/FLX/1440187), SJ-Adv (https://doi.org/10.18140/FLX/1440241), SJ-Blv (https://doi.org/10.18140/FLX/1440242), US-A03 (https://doi.org/10.17190/AMF/1498752), US-A10 (https://doi.org/10.17190/AMF/1498753), US-An1 (https://doi.org/10.17190/AMF/1246142), US-An2 (https://doi.org/10.17190/AMF/1246143), US-An3 (https://doi.org/10.17190/AMF/1246144), US-Atq (https://doi.org/10.17190/AMF/1246029), US-Brw (https://doi.org/10.17190/AMF/1246041), US-EML (https://doi.org/10.17190/AMF/1418678), US-HVa (https://doi.org/10.17190/AMF/1246064), US-ICh (https://doi.org/10.17190/AMF/1246133), US-ICs (https://doi.org/10.17190/AMF/1246130), US-ICt (https://doi.org/10.17190/AMF/1246131), US-Ivo (https://doi.org/10.17190/AMF/1246067), US-NGB (https://doi.org/10.17190/AMF/1436326), US-Upa (https://doi.org/10.17190/AMF/1246108), US-xHE (https://doi.org/10.17190/AMF/1617729), US-xTL (https://doi.org/10.17190/AMF/1617739). Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models.This dataset contains metadata information about surface energy budget components measured at 64 tundra and glacier sites >60° N across the Arctic. This information was taken from the open-access repositories FLUXNET, Ameriflux, AON, GC-Net and PROMICE. The contained datasets are associated with the publication vegetation type as an important predictor of the Arctic Summer Land Surface Energy Budget by Oehri et al. 2022, and intended to support research of surface energy budgets and their relationship with environmental conditions, in particular vegetation characteristics across the terrestrial Arctic.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Denmark, GermanyPublisher:Stockholm University Press Authors: Stiegler, Christian; Johansson, Margareta; Christensen, Torben R; Mastepanov, Mikhail; +1 AuthorsStiegler, Christian; Johansson, Margareta; Christensen, Torben R; Mastepanov, Mikhail; Lindroth, Anders;Permafrost, a key component of the arctic and global climate system, is highly sensitive to climate change. Observed and ongoing permafrost degradation influences arctic hydrology, ecology and biogeochemistry, and models predict that rapid warming is expected to significantly reduce near-surface permafrost and seasonally frozen ground during the 21st century. These changes raise concern of how permafrost thaw affects the exchange of water and energy with the atmosphere. However, associated impacts of permafrost thaw on the surface energy balance and possible feedbacks on the climate system are largely unknown. In this study, we show that in northern subarctic Sweden, permafrost thaw and related degradation of peat plateaus significantly change the surface energy balance of three peatland complexes by enhancing latent heat flux and, to less degree, also ground heat flux at the cost of sensible heat flux. This effect is valid at all radiation levels but more pronounced at higher radiation levels. The observed differences in flux partitioning mainly result from the strong coupling between soil moisture availability, vegetation composition, albedo and surface structure. Our results suggest that ongoing and predicted permafrost degradation in northern subarctic Sweden ultimately result in changes in land–atmosphere coupling due to changes in the partitioning between latent and sensible heat fluxes. This in turn has crucial implications for how predictive climate models for the Arctic are further developed.Keywords: permafrost degradation, subarctic peatlands, surface energy balance, climate change, land–atmosphere coupling(Published: 5 April 2016)Citation: Tellus B 2016, 68, 30467, http://dx.doi.org/10.3402/tellusb.v68.30467
Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2016Data sources: Co-Action PublishingTellus: Series B, Chemical and Physical MeteorologyArticle . 2016 . Peer-reviewedData sources: CrossrefTellus: Series B, Chemical and Physical MeteorologyArticleLicense: CC BY NCData sources: UnpayWallPublikationenserver der Georg-August-Universität GöttingenArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3402/tellusb.v68.30467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Tellus: Series B, Ch... arrow_drop_down Tellus: Series B, Chemical and Physical MeteorologyArticle . 2016Data sources: Co-Action PublishingTellus: Series B, Chemical and Physical MeteorologyArticle . 2016 . Peer-reviewedData sources: CrossrefTellus: Series B, Chemical and Physical MeteorologyArticleLicense: CC BY NCData sources: UnpayWallPublikationenserver der Georg-August-Universität GöttingenArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3402/tellusb.v68.30467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:IOP Publishing Funded by:EC | GreenFeedBackEC| GreenFeedBackShannon L Speir; Jennifer L Tank; Ada Pastor; Marc F Muller; Mikhail Mastepanov; Tenna Riis;Abstract Climate change is expected to alter nitrogen (N) export from Arctic rivers, with potential implications for fragile coastal ecosystems and fisheries. Yet, the directionality of change is poorly understood, as increased mobilization of N in a ‘thawing’ Arctic is countered by higher rates of vegetative uptake in a ‘greening’ Arctic, particularly in the understudied region of Greenland. We use an unprecedented dataset of long-term (n = 18 years) river chemistry, streamflow, and catchment-scale changes in snow and vegetation to document changing riverine N loss in Greenland. We documented decreasing inorganic and organic N loads, linked to decreasing snow stores, warming soils, and enhanced plant uptake. Higher variability in N export across years also points to the increasing role of high flow events in driving downstream N loss. This alteration in N cycling may significantly reduce both inorganic and organic N transport across the terrestrial-aquatic boundary during the open water season in a rapidly warming Greenland.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad3e8e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad3e8e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather; Grünberg, Inge; Zemlianskii, Vitalii; Sonnentag, Oliver; Euskirchen, Eugénie S; Reji Chacko, Merin; Muscari, Giovanni; Blanken, Peter D; Dean, Joshua F; di Sarra, Alcide; Harding, Richard J; Sobota, Ireneusz; Kutzbach, Lars; Plekhanova, Elena; Riihelä, Aku; Boike, Julia; Miller, Nathaniel B; Beringer, Jason; López-Blanco, Efrén; Stoy, Paul C; Sullivan, Ryan C; Kejna, Marek; Parmentier, Frans-Jan W; Gamon, John A; Mastepanov, Mikhail; Wille, Christian; Jackowicz-Korczynski, Marcin; Karger, Dirk N; Quinton, William L; Putkonen, Jaakko; van As, Dirk; Christensen, Torben R; Hakuba, Maria Z; Stone, Robert S; Metzger, Stefan; Vandecrux, Baptiste; Frost, Gerald V; Wild, Martin; Hansen, Birger Ulf; Meloni, Daniela; Domine, Florent; te Beest, Mariska; Sachs, Torsten; Kalhori, Aram; Rocha, Adrian V; Williamson, Scott N; Morris, Sara; Atchley, Adam L; Essery, Richard; Runkle, Benjamin R K; Holl, David; Riihimaki, Laura; Iwata, Hiroki; Schuur, Edward A G; Cox, Christopher J; Grachev, Andrey A; McFadden, Joseph P; Fausto, Robert S; Göckede, Mathias; Ueyama, Masahito; Pirk, Norbert; de Boer, Gijs; Bret-Harte, M Syndonia; Leppäranta, Matti; Steffen, Konrad; Friborg, Thomas; Ohmura, Atsumu; Edgar, Colin W; Olofsson, Johan; Chambers, Scott D;Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models.This dataset describes the data generated in a literature synthesis, covering 358 study sites on vegetation or glacier (>=60°N latitude), which contained surface energy budget observations. The literature synthesis comprised 148 publications searched on the ISI Web of Science Core Collection.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.949737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Finland, GermanyPublisher:Wiley Funded by:AKA | Mechanisms underlying lar...AKA| Mechanisms underlying large N2O emissions from cryoturbated peat soil in tundraCarolina Voigt; Carolina Voigt; Timo Oksanen; Claire C. Treat; Annalea Lohila; Torben R. Christensen; Torben R. Christensen; Richard E. Lamprecht; Mikhail Mastepanov; Mikhail Mastepanov; Marcin Jackowicz-Korczynski; Marcin Jackowicz-Korczynski; Pertti J. Martikainen; Hannu Nykänen; Markku Oinonen; V. Palonen; Maxim Dorodnikov; Maija E. Marushchak; Maija E. Marushchak; Christina Biasi; Amelie Lindgren; Amelie Lindgren;doi: 10.1111/gcb.14574
pmid: 30681758
AbstractPermafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near‐natural conditions. We monitored GHG flux dynamics via high‐resolution flow‐through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2–C m−2 day−1; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2–C m−2 day−1, mean ± SD, pre‐ and post‐thaw, respectively). Radiocarbon dating (14C) of respired CO2, supported by an independent curve‐fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post‐thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO2 burden post‐thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre‐ and post‐thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.
UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2019Full-Text: http://dx.doi.org/10.1111/gcb.14574Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2020Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UEF eRepository (Uni... arrow_drop_down UEF eRepository (University of Eastern Finland)Article . 2019Full-Text: http://dx.doi.org/10.1111/gcb.14574Data sources: Bielefeld Academic Search Engine (BASE)Jyväskylä University Digital ArchiveArticle . 2019 . Peer-reviewedData sources: Jyväskylä University Digital ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2020Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu