- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2011 SingaporePublisher:Royal Society of Chemistry (RSC) Zhu, Jixin; Zhu, Ting; Zhou, Xiaozhu; Zhang, Yanyan; Lou, David Xiong Wen; Chen, Xiaodong; Zhang, Hua; Hng, Huey Hoon; Yan, Qingyu;We report an environment-friendly approach to synthesize transition metal oxide nanoparticles (NPs)/reduced graphene oxide (rGO) sheets hybrids by combining the reduction of graphene oxide (GO) with the growth of metal oxide NPs in one step. Either Fe2O3 or CoO NPs were grown onto rGO sheets in ethanol solution through a solvothermal process, during which GOs were reduced to rGO without the addition of any strong reducing agent, e.g. hydrazine, or requiring any post-high-temperature annealing process. The GO or rGO during the precipitation of metal oxide NPs may act as heterogeneous nucleation seeds to facilitate the formation of small crystal grains. This may allow more efficient diffusion of Li ions and lead to high specific capacities. These metal oxide NPs-rGO hybrids were used as anodes for Li-ion batteries, which showed high capacities and excellent charge-discharge cycling stability in the voltage window between 0.01 and 3.0 V. For example, Fe2O3 NPs/rGO hybrids showed specific capacity of 881 mA h g(-1) in the 90th cycle at a discharge current density of 302 mA g(-1) (0.3 C), while CoO NPs/rGO hybrids showed a lower capacity of 600 mA h g(-1) in the 90th cycle at a discharge current density of 215 mA g(-1) (0.3 C). These nanohybrids also show excellent capacities at high C rate currents, e.g. 611 mA h g(-1) for Fe2O3/rGO sample in the 300th cycle at 2014 mA g(-1) (2 C). Such synthesis technique can be a promising route to produce advanced electrode materials for Li-ion batteries.
Nanoscale arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0nr00744g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 358 citations 358 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nanoscale arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0nr00744g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SingaporePublisher:Royal Society of Chemistry (RSC) Wang, Zhiyu; Luan, Deyan; Madhavi, Srinivasan; Hu, Yong; Lou, David Xiong Wen;doi: 10.1039/c1ee02831f
handle: 10220/13281 , 10356/98058
Novel hierarchical nanostructures composed of carbon coated α-Fe2O3 hollow nanohorns on carbon nanotube (CNT) backbones have been constructed by direct growth and thermal transformation of β-FeOOH nanospindles on CNTs, followed by carbon nanocoating. When evaluated as a potential anode material for lithium-ion batteries, such hierarchical structures exhibit superior lithium storage capabilities by virtue of their advantageous structural features.
Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee02831f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 762 citations 762 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee02831f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Authors: Peng Zhang; Sibo Wang; Bu Yuan Guan; Xiong Wen (David) Lou;doi: 10.1039/c8ee02538j
Novel CdS hierarchical multi-cavity hollow particles exhibit enhanced performance for photocatalytic CO2 reduction. The activity is further boosted by loading of Au as the cocatalyst.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee02538j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu228 citations 228 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee02538j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Royal Society of Chemistry (RSC) Zhiming Liu; Ungyu Paik; Xiong Wen (David) Lou; Xiong Wen (David) Lou; Xin-Yao Yu; Xin-Yao Yu;doi: 10.1039/c6ee01501h
Sb@C coaxial nanotubes have been designed and synthesized using a facile strategy starting with Sb2S3nanorods. The as-obtained Sb@C nanotubes exhibit unprecedented sodium storage properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01501h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu348 citations 348 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01501h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Bin Liu; Bin Liu; Eray S. Aydil; Hsin-Yi Wang; Xiong Wen (David) Lou; Li-Min Liu; Xiu Feng Lang;doi: 10.1039/c4ee00472h
First-principles calculations suggest that doping TiO2 with carbonate can effectively reduce the bandgap of TiO2, thus making TiO2 photoactive in the visible region of the solar spectrum. Herein we report a simple “one-pot” solvothermal method for synthesizing brown carbonate-doped TiO2 microspheres. The diameter of the TiO2 microsphere is tunable from ∼0.5 to 4 μm with the nanopore size in the range of 3–11 nm. Remarkably, the specific surface area of these nanoporous anatase TiO2 microspheres can be as high as 500 m2 g−1. A controllable amount of carbonate could be incorporated into TiO2 through low-temperature post-synthesis annealing, which extends the light absorption of the TiO2 microspheres from the ultraviolet to the visible region of the solar spectrum. Very high photocatalytic activity of these carbonate-doped TiO2 microspheres was demonstrated in the visible light region for both photocatalytic production of hydrogen from water and degradation of methyl orange. Under 3 Sun visible-light illumination (λ ≥ 400 nm), the carbonate-doped TiO2 microspheres can produce 0.2 mmol H2 h−1 g−1 of photocatalyst, which is significantly higher than those from various other TiO2 photocatalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee00472h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu256 citations 256 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee00472h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SingaporePublisher:Royal Society of Chemistry (RSC) Xiong Wen David Lou; Jilei Liu; Jilei Liu; Zexiang Shen; Jianyi Lin; Jianyi Lin; Hao Bin Wu; Lili Zhang;doi: 10.1039/c4ee01475h
handle: 10220/38532 , 10356/98113
In this work, we report the fabrication of a new 3D graphene foam (GF)/carbon nanotube (CNT) hybrid film with high flexibility and robustness as the ideal support for deposition of large amounts of electrochemically active materials per unit area. To demonstrate the concept, we have deposited MnO2 and polypyrrole (Ppy) on the GF/CNT films and successfully fabricated lightweight and flexible asymmetric supercapacitors (ASCs). These ASCs assembled from GF/CNT/MnO2 and GF/CNT/Ppy hybrid films with high loading of electroactive materials in an aqueous electrolyte are able to function with an output voltage of 1.6 V, and deliver high energy/power density (22.8 W h kg−1 at 860 W kg−1 and 2.7 kW kg−1 at 6.2 W h kg−1). The rate performance can be further improved with less loading of electroactive materials (10.3 kW kg−1 at 10.9 W h kg−1). The ASCs demonstrate remarkable cycling stability (capacitance retention of 90.2–83.5% after 10 000 cycles), which is among the best reported for ASCs with both electrodes made of non-carbon electroactive materials. Also the ASCs are able to perfectly retain their electrochemical performance at different bending angles. These ASCs demonstrate great potential as power sources for flexible and lightweight electronic devices.
Energy & Environment... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01475h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 551 citations 551 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01475h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Royal Society of Chemistry (RSC) Mengzhou Yu; Zhiyu Wang; Xiong Wen (David) Lou; Han Hu; Lei Han;doi: 10.1039/c5ee02903a
Rationally designed Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages exhibit excellent electrocatalytic performance for the oxygen reduction reaction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee02903a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu488 citations 488 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee02903a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SingaporePublisher:Royal Society of Chemistry (RSC) Enlai Hu; Yafei Feng; Jianwei Nai; Dian Zhao; Yong Hu; Xiong Wen (David) Lou;doi: 10.1039/c8ee00076j
handle: 10356/143842
Novel Ni–Co–P hollow nanobricks are constructed with oriented nanosheets and manifest as an excellent bifunctional electrocatalyst for overall water splitting.
Digital Repository o... arrow_drop_down Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00076j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 776 citations 776 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00076j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SingaporePublisher:Elsevier BV Authors: Zhang, Peng; Guan, Bu Yuan; Yu, Le; Lou, David Xiong Wen;handle: 10356/140076
Summary Constructing heterojunctions and designing advanced structures are effective approaches to enhancing the photoelectrochemical performance of semiconductor photocatalysts for solar energy conversion. Here, we have developed a sequential chemical etching, sulfidation, and cation-exchange strategy for preparing multi-shelled ZnS-CdS rhombic dodecahedral cages (RDCs) with tunable compositions and shell numbers from 1 to 5. Yolk-shelled Zn-based zeolitic imidazolate (ZIF-8) RDCs are first synthesized by chemical etching of ZIF-8 rhombic dodecahedrons. Sulfidation of the yolk-shelled ZIF-8 RDCs leads to the formation of multi-shelled ZnS RDCs, which are further converted into multi-shelled ZnS-CdS RDCs via a cation-exchange reaction. The composition of the multi-shelled ZnS-CdS RDCs can be tuned by varying the cation-exchange reaction time, and the shell number can be adjusted by changing the size of ZIF-8 precursors. Because of the heterojunction formed and the unique hollow structure, these triple-shelled ZnS-CdS RDCs with optimized composition show enhanced photoelectrochemical performance for solar water splitting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chempr.2017.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 225 citations 225 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chempr.2017.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Singapore, Saudi ArabiaPublisher:Wiley Xin Wu; Xin Wu; Jian Zhang; Xiong Wen David Lou; Huabin Zhang; Huabin Zhang;AbstractTransition metal dichalcogenides (TMDCs) hold great promise for electrochemical energy conversion technologies in view of their unique structural features associated with the layered structure and ultrathin thickness. Because the inert basal plane accounts for the majority of a TMDC's bulk, activation of the basal plane sites is necessary to fully exploit the intrinsic potential of TMDCs. Here, recent advances on TMDCs‐based hybrids/composites with greatly enhanced electrochemical activity are reviewed. After a summary of the synthesis of TMDCs with different sizes and morphologies, comprehensive in‐plane activation strategies are described in detail, mainly including in‐plane‐modification‐induced phase transformation, surface‐layer modulation, and interlayer modification/coupling. Simultaneously, the underlying mechanisms for improved electrochemical activities are highlighted. Finally, the strategic evaluation on further research directions of TMDCs in‐plane activation is featured. This work would shed some light on future design trends of TMDCs‐based functional materials for electrochemical energy‐related applications.
Digital Repository o... arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202008376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 164 citations 164 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202008376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 SingaporePublisher:Royal Society of Chemistry (RSC) Zhu, Jixin; Zhu, Ting; Zhou, Xiaozhu; Zhang, Yanyan; Lou, David Xiong Wen; Chen, Xiaodong; Zhang, Hua; Hng, Huey Hoon; Yan, Qingyu;We report an environment-friendly approach to synthesize transition metal oxide nanoparticles (NPs)/reduced graphene oxide (rGO) sheets hybrids by combining the reduction of graphene oxide (GO) with the growth of metal oxide NPs in one step. Either Fe2O3 or CoO NPs were grown onto rGO sheets in ethanol solution through a solvothermal process, during which GOs were reduced to rGO without the addition of any strong reducing agent, e.g. hydrazine, or requiring any post-high-temperature annealing process. The GO or rGO during the precipitation of metal oxide NPs may act as heterogeneous nucleation seeds to facilitate the formation of small crystal grains. This may allow more efficient diffusion of Li ions and lead to high specific capacities. These metal oxide NPs-rGO hybrids were used as anodes for Li-ion batteries, which showed high capacities and excellent charge-discharge cycling stability in the voltage window between 0.01 and 3.0 V. For example, Fe2O3 NPs/rGO hybrids showed specific capacity of 881 mA h g(-1) in the 90th cycle at a discharge current density of 302 mA g(-1) (0.3 C), while CoO NPs/rGO hybrids showed a lower capacity of 600 mA h g(-1) in the 90th cycle at a discharge current density of 215 mA g(-1) (0.3 C). These nanohybrids also show excellent capacities at high C rate currents, e.g. 611 mA h g(-1) for Fe2O3/rGO sample in the 300th cycle at 2014 mA g(-1) (2 C). Such synthesis technique can be a promising route to produce advanced electrode materials for Li-ion batteries.
Nanoscale arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0nr00744g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 358 citations 358 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nanoscale arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0nr00744g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SingaporePublisher:Royal Society of Chemistry (RSC) Wang, Zhiyu; Luan, Deyan; Madhavi, Srinivasan; Hu, Yong; Lou, David Xiong Wen;doi: 10.1039/c1ee02831f
handle: 10220/13281 , 10356/98058
Novel hierarchical nanostructures composed of carbon coated α-Fe2O3 hollow nanohorns on carbon nanotube (CNT) backbones have been constructed by direct growth and thermal transformation of β-FeOOH nanospindles on CNTs, followed by carbon nanocoating. When evaluated as a potential anode material for lithium-ion batteries, such hierarchical structures exhibit superior lithium storage capabilities by virtue of their advantageous structural features.
Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee02831f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 762 citations 762 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee02831f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Authors: Peng Zhang; Sibo Wang; Bu Yuan Guan; Xiong Wen (David) Lou;doi: 10.1039/c8ee02538j
Novel CdS hierarchical multi-cavity hollow particles exhibit enhanced performance for photocatalytic CO2 reduction. The activity is further boosted by loading of Au as the cocatalyst.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee02538j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu228 citations 228 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee02538j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Royal Society of Chemistry (RSC) Zhiming Liu; Ungyu Paik; Xiong Wen (David) Lou; Xiong Wen (David) Lou; Xin-Yao Yu; Xin-Yao Yu;doi: 10.1039/c6ee01501h
Sb@C coaxial nanotubes have been designed and synthesized using a facile strategy starting with Sb2S3nanorods. The as-obtained Sb@C nanotubes exhibit unprecedented sodium storage properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01501h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu348 citations 348 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01501h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Bin Liu; Bin Liu; Eray S. Aydil; Hsin-Yi Wang; Xiong Wen (David) Lou; Li-Min Liu; Xiu Feng Lang;doi: 10.1039/c4ee00472h
First-principles calculations suggest that doping TiO2 with carbonate can effectively reduce the bandgap of TiO2, thus making TiO2 photoactive in the visible region of the solar spectrum. Herein we report a simple “one-pot” solvothermal method for synthesizing brown carbonate-doped TiO2 microspheres. The diameter of the TiO2 microsphere is tunable from ∼0.5 to 4 μm with the nanopore size in the range of 3–11 nm. Remarkably, the specific surface area of these nanoporous anatase TiO2 microspheres can be as high as 500 m2 g−1. A controllable amount of carbonate could be incorporated into TiO2 through low-temperature post-synthesis annealing, which extends the light absorption of the TiO2 microspheres from the ultraviolet to the visible region of the solar spectrum. Very high photocatalytic activity of these carbonate-doped TiO2 microspheres was demonstrated in the visible light region for both photocatalytic production of hydrogen from water and degradation of methyl orange. Under 3 Sun visible-light illumination (λ ≥ 400 nm), the carbonate-doped TiO2 microspheres can produce 0.2 mmol H2 h−1 g−1 of photocatalyst, which is significantly higher than those from various other TiO2 photocatalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee00472h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu256 citations 256 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee00472h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SingaporePublisher:Royal Society of Chemistry (RSC) Xiong Wen David Lou; Jilei Liu; Jilei Liu; Zexiang Shen; Jianyi Lin; Jianyi Lin; Hao Bin Wu; Lili Zhang;doi: 10.1039/c4ee01475h
handle: 10220/38532 , 10356/98113
In this work, we report the fabrication of a new 3D graphene foam (GF)/carbon nanotube (CNT) hybrid film with high flexibility and robustness as the ideal support for deposition of large amounts of electrochemically active materials per unit area. To demonstrate the concept, we have deposited MnO2 and polypyrrole (Ppy) on the GF/CNT films and successfully fabricated lightweight and flexible asymmetric supercapacitors (ASCs). These ASCs assembled from GF/CNT/MnO2 and GF/CNT/Ppy hybrid films with high loading of electroactive materials in an aqueous electrolyte are able to function with an output voltage of 1.6 V, and deliver high energy/power density (22.8 W h kg−1 at 860 W kg−1 and 2.7 kW kg−1 at 6.2 W h kg−1). The rate performance can be further improved with less loading of electroactive materials (10.3 kW kg−1 at 10.9 W h kg−1). The ASCs demonstrate remarkable cycling stability (capacitance retention of 90.2–83.5% after 10 000 cycles), which is among the best reported for ASCs with both electrodes made of non-carbon electroactive materials. Also the ASCs are able to perfectly retain their electrochemical performance at different bending angles. These ASCs demonstrate great potential as power sources for flexible and lightweight electronic devices.
Energy & Environment... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01475h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 551 citations 551 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee01475h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Royal Society of Chemistry (RSC) Mengzhou Yu; Zhiyu Wang; Xiong Wen (David) Lou; Han Hu; Lei Han;doi: 10.1039/c5ee02903a
Rationally designed Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages exhibit excellent electrocatalytic performance for the oxygen reduction reaction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee02903a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu488 citations 488 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5ee02903a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SingaporePublisher:Royal Society of Chemistry (RSC) Enlai Hu; Yafei Feng; Jianwei Nai; Dian Zhao; Yong Hu; Xiong Wen (David) Lou;doi: 10.1039/c8ee00076j
handle: 10356/143842
Novel Ni–Co–P hollow nanobricks are constructed with oriented nanosheets and manifest as an excellent bifunctional electrocatalyst for overall water splitting.
Digital Repository o... arrow_drop_down Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00076j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 776 citations 776 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Energy & Environmental ScienceArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00076j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SingaporePublisher:Elsevier BV Authors: Zhang, Peng; Guan, Bu Yuan; Yu, Le; Lou, David Xiong Wen;handle: 10356/140076
Summary Constructing heterojunctions and designing advanced structures are effective approaches to enhancing the photoelectrochemical performance of semiconductor photocatalysts for solar energy conversion. Here, we have developed a sequential chemical etching, sulfidation, and cation-exchange strategy for preparing multi-shelled ZnS-CdS rhombic dodecahedral cages (RDCs) with tunable compositions and shell numbers from 1 to 5. Yolk-shelled Zn-based zeolitic imidazolate (ZIF-8) RDCs are first synthesized by chemical etching of ZIF-8 rhombic dodecahedrons. Sulfidation of the yolk-shelled ZIF-8 RDCs leads to the formation of multi-shelled ZnS RDCs, which are further converted into multi-shelled ZnS-CdS RDCs via a cation-exchange reaction. The composition of the multi-shelled ZnS-CdS RDCs can be tuned by varying the cation-exchange reaction time, and the shell number can be adjusted by changing the size of ZIF-8 precursors. Because of the heterojunction formed and the unique hollow structure, these triple-shelled ZnS-CdS RDCs with optimized composition show enhanced photoelectrochemical performance for solar water splitting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chempr.2017.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 225 citations 225 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chempr.2017.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Singapore, Saudi ArabiaPublisher:Wiley Xin Wu; Xin Wu; Jian Zhang; Xiong Wen David Lou; Huabin Zhang; Huabin Zhang;AbstractTransition metal dichalcogenides (TMDCs) hold great promise for electrochemical energy conversion technologies in view of their unique structural features associated with the layered structure and ultrathin thickness. Because the inert basal plane accounts for the majority of a TMDC's bulk, activation of the basal plane sites is necessary to fully exploit the intrinsic potential of TMDCs. Here, recent advances on TMDCs‐based hybrids/composites with greatly enhanced electrochemical activity are reviewed. After a summary of the synthesis of TMDCs with different sizes and morphologies, comprehensive in‐plane activation strategies are described in detail, mainly including in‐plane‐modification‐induced phase transformation, surface‐layer modulation, and interlayer modification/coupling. Simultaneously, the underlying mechanisms for improved electrochemical activities are highlighted. Finally, the strategic evaluation on further research directions of TMDCs in‐plane activation is featured. This work would shed some light on future design trends of TMDCs‐based functional materials for electrochemical energy‐related applications.
Digital Repository o... arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202008376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 164 citations 164 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Advanced MaterialsArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adma.202008376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu