- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Language
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Switzerland, SwitzerlandPublisher:Wiley Funded by:SNSF | NCCR Bio-Inspired Materia..., SNSF | From Plant to Polymer: Li...SNSF| NCCR Bio-Inspired Materials: Using Concepts from Nature to Create ‚Smart' Materials (phase II) ,SNSF| From Plant to Polymer: Lignin upgrading to high-value aromatic monomers and their derived polymersAuthors: Stefania Bertella; Monique Bernardes Figueirêdo; Gaia De Angelis; Malcolm Mourez; +3 AuthorsStefania Bertella; Monique Bernardes Figueirêdo; Gaia De Angelis; Malcolm Mourez; Claire Bourmaud; Esther Amstad; Jeremy S. Luterbacher;AbstractThe amphiphilic chemical structure of native lignin, composed by a hydrophobic aromatic core and hydrophilic hydroxy groups, makes it a promising alternative for the development of bio‐based surface‐active compounds. However, the severe conditions traditionally needed during biomass fractionation make lignin prone to condensation and cause it to lose hydrophilic hydroxy groups in favour of the formation of C−C bonds, ultimately decreasing lignin's abilities to lower surface tension of water/oil mixtures. Therefore, it is often necessary to further functionalize lignin in additional synthetic steps in order to obtain a surfactant with suitable properties. In this work, multifunctional aldehyde‐assisted fractionation with glyoxylic acid (GA) was used to prevent lignin condensation and simultaneously introduce a controlled amount of carboxylic acid on the lignin backbone for its further use as surfactant. After fully characterizing the extracted GA‐lignin, its surface activity was measured in several water/oil systems at different pH values. Then, the stability of water/mineral oil emulsions was evaluated at different pH and over a course of 30 days by traditional photography and microscopy imaging. Further, the use of GA‐lignin as a surfactant was investigated in the formulation of a cosmetic hand cream composed of industrially relevant ingredients. Contrary to industrial lignins such as Kraft lignin, GA‐lignin did not alter the color or smell of the formulation. Finally, the surface activity of GA‐lignin was compared with other lignin‐based and fossil‐based surfactants, showing that GA‐lignin presented similar or better surface‐active properties compared to some of the most commonly used surfactants. The overall results showed that GA‐lignin, a biopolymer that can be made exclusively from renewable carbon, can successfully be extracted in one step from lignocellulosic biomass. This lignin can be used as an effective surfactant without further modification, and as such is a promising candidate for the development of new bio‐based surface‐active products.
ChemSusChem arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202200270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202200270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwitzerlandPublisher:Wiley Songlan Sun; Gaia De Angelis; Stefania Bertella; Marie J. Jones; Graham R. Dick; Esther Amstad; Jeremy S. Luterbacher;pmid: 38010646
AbstractConcerns over the sustainability and end‐of‐life properties of fossil‐derived surfactants have driven interest in bio‐based alternatives. Lignocellulosic biomass with its polar functional groups is an obvious feedstock for surfactant production but its use is limited by process complexity and low yield. Here, we present a simple two‐step approach to prepare bio‐based amphiphiles directly from hemicellulose and lignin at high yields (29 % w/w based on the total raw biomass and >80 % w/w of these two fractions). Acetal functionalization of xylan and lignin with fatty aldehydes during fractionation introduced hydrophobic segments and subsequent defunctionalization by hydrogenolysis of the xylose derivatives or acidic hydrolysis of the lignin derivatives produced amphiphiles. The resulting biodegradable xylose acetals and/or ethers, and lignin‐based amphiphilic polymers both largely retained their original natural structures, but exhibited competitive or superior surface activity in water/oil systems compared to common bio‐based surfactants.
Angewandte Chemie In... arrow_drop_down Angewandte Chemie International EditionArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte ChemieArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202312823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Angewandte Chemie In... arrow_drop_down Angewandte Chemie International EditionArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte ChemieArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202312823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:SNSF | NCCR Catalysis (phase I), SNSF | Using protection group ch..., SNSF | From Plant to Polymer: Li...SNSF| NCCR Catalysis (phase I) ,SNSF| Using protection group chemistry during biomass depolymerization ,SNSF| From Plant to Polymer: Lignin upgrading to high-value aromatic monomers and their derived polymersSun, Songlan; De Angelis, Gaia; Bertella, Stefania; Jones, Marie; Dick, Graham; Amstad, Esther; Luterbacher, Jeremy;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10161171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10161171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Switzerland, SwitzerlandPublisher:Wiley Funded by:SNSF | NCCR Bio-Inspired Materia..., SNSF | From Plant to Polymer: Li...SNSF| NCCR Bio-Inspired Materials: Using Concepts from Nature to Create ‚Smart' Materials (phase II) ,SNSF| From Plant to Polymer: Lignin upgrading to high-value aromatic monomers and their derived polymersAuthors: Stefania Bertella; Monique Bernardes Figueirêdo; Gaia De Angelis; Malcolm Mourez; +3 AuthorsStefania Bertella; Monique Bernardes Figueirêdo; Gaia De Angelis; Malcolm Mourez; Claire Bourmaud; Esther Amstad; Jeremy S. Luterbacher;AbstractThe amphiphilic chemical structure of native lignin, composed by a hydrophobic aromatic core and hydrophilic hydroxy groups, makes it a promising alternative for the development of bio‐based surface‐active compounds. However, the severe conditions traditionally needed during biomass fractionation make lignin prone to condensation and cause it to lose hydrophilic hydroxy groups in favour of the formation of C−C bonds, ultimately decreasing lignin's abilities to lower surface tension of water/oil mixtures. Therefore, it is often necessary to further functionalize lignin in additional synthetic steps in order to obtain a surfactant with suitable properties. In this work, multifunctional aldehyde‐assisted fractionation with glyoxylic acid (GA) was used to prevent lignin condensation and simultaneously introduce a controlled amount of carboxylic acid on the lignin backbone for its further use as surfactant. After fully characterizing the extracted GA‐lignin, its surface activity was measured in several water/oil systems at different pH values. Then, the stability of water/mineral oil emulsions was evaluated at different pH and over a course of 30 days by traditional photography and microscopy imaging. Further, the use of GA‐lignin as a surfactant was investigated in the formulation of a cosmetic hand cream composed of industrially relevant ingredients. Contrary to industrial lignins such as Kraft lignin, GA‐lignin did not alter the color or smell of the formulation. Finally, the surface activity of GA‐lignin was compared with other lignin‐based and fossil‐based surfactants, showing that GA‐lignin presented similar or better surface‐active properties compared to some of the most commonly used surfactants. The overall results showed that GA‐lignin, a biopolymer that can be made exclusively from renewable carbon, can successfully be extracted in one step from lignocellulosic biomass. This lignin can be used as an effective surfactant without further modification, and as such is a promising candidate for the development of new bio‐based surface‐active products.
ChemSusChem arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202200270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.202200270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwitzerlandPublisher:Wiley Songlan Sun; Gaia De Angelis; Stefania Bertella; Marie J. Jones; Graham R. Dick; Esther Amstad; Jeremy S. Luterbacher;pmid: 38010646
AbstractConcerns over the sustainability and end‐of‐life properties of fossil‐derived surfactants have driven interest in bio‐based alternatives. Lignocellulosic biomass with its polar functional groups is an obvious feedstock for surfactant production but its use is limited by process complexity and low yield. Here, we present a simple two‐step approach to prepare bio‐based amphiphiles directly from hemicellulose and lignin at high yields (29 % w/w based on the total raw biomass and >80 % w/w of these two fractions). Acetal functionalization of xylan and lignin with fatty aldehydes during fractionation introduced hydrophobic segments and subsequent defunctionalization by hydrogenolysis of the xylose derivatives or acidic hydrolysis of the lignin derivatives produced amphiphiles. The resulting biodegradable xylose acetals and/or ethers, and lignin‐based amphiphilic polymers both largely retained their original natural structures, but exhibited competitive or superior surface activity in water/oil systems compared to common bio‐based surfactants.
Angewandte Chemie In... arrow_drop_down Angewandte Chemie International EditionArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte ChemieArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202312823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Angewandte Chemie In... arrow_drop_down Angewandte Chemie International EditionArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte ChemieArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202312823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:SNSF | NCCR Catalysis (phase I), SNSF | Using protection group ch..., SNSF | From Plant to Polymer: Li...SNSF| NCCR Catalysis (phase I) ,SNSF| Using protection group chemistry during biomass depolymerization ,SNSF| From Plant to Polymer: Lignin upgrading to high-value aromatic monomers and their derived polymersSun, Songlan; De Angelis, Gaia; Bertella, Stefania; Jones, Marie; Dick, Graham; Amstad, Esther; Luterbacher, Jeremy;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10161171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10161171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu