- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Society for Neuroscience Funded by:ARC | Discovery Early Career Re..., NHMRC | Mapping and manipulating ..., NHMRC | Brain circuits promoting ...ARC| Discovery Early Career Researcher Award - Grant ID: DE170100509 ,NHMRC| Mapping and manipulating circuits for relapse and abstinence ,NHMRC| Brain circuits promoting abstinence and preventing relapse to alcohol seekingAsheeta A. Prasad; Caroline Xie; Chanchanok Chaichim; Jennifer H. Nguyen; Hannah E. McClusky; Simon Killcross; John M. Power; Gavan P. McNally;The ventral pallidum (VP) is a key node in the neural circuits controlling relapse to drug seeking. How this role relates to different VP cell types and their projections is poorly understood. Using male rats, we show how different forms of relapse to alcohol-seeking are assembled from VP cell types and their projections to lateral hypothalamus (LH) and ventral tegmental area (VTA). Using RNAScopein situhybridization to characterize activity of different VP cell types during relapse to alcohol-seeking provoked by renewal (context-induced reinstatement), we found that VP Gad1 and parvalbumin (PV), but not vGlut2, neurons show relapse-associated changes in c-Fos expression. Next, we used retrograde tracing, chemogenetic, and electrophysiological approaches to study the roles of VPGad1and VPPVneurons in relapse. We show that VPGad1neurons contribute to contextual control over relapse (renewal), but not to relapse during reacquisition, via projections to LH, where they converge with ventral striatal inputs onto LHGad1neurons. This convergence of striatopallidal inputs at the level of individual LHGad1neurons may be critical to balancing propensity for relapse versus abstinence. In contrast, VPPVneurons contribute to relapse during both renewal and reacquisition via projections to VTA. These findings identify a double dissociation in the roles for different VP cell types and their projections in relapse. VPGad1neurons control relapse during renewal via projections to LH. VPPVneurons control relapse during both renewal and reacquisition via projections to VTA. Targeting these different pathways may provide tailored interventions for different forms of relapse.SIGNIFICANCE STATEMENTRelapse to drug or reward seeking after a period of extinction or abstinence remains a key impediment to successful treatment. The ventral pallidum, located in the ventral basal ganglia, has long been recognized as an obligatory node in a 'final common pathway' for relapse. Yet how this role relates to the considerable VP cellular and circuit heterogeneity is not well understood. We studied the cellular and circuit architecture for VP in relapse control. We show that different forms of relapse have complementary VP cellular and circuit architectures, raising the possibility that targeting these different neural architectures may provide tailored interventions for different forms of relapse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1523/jneurosci.0262-19.2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1523/jneurosci.0262-19.2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NHMRC | Brain circuits promoting ..., NHMRC | A memory retrieval - exti..., NHMRC | Unraveling the neural cir...NHMRC| Brain circuits promoting abstinence and preventing relapse to alcohol seeking ,NHMRC| A memory retrieval - extinction procedure to prevent relapse to drug seeking ,NHMRC| Unraveling the neural circuitry of context-induced relapse to alcohol seeking after punishment-imposed abstinenceSimon Killcross; Andrew J Lawrence; Nathan J. Marchant; Nathan J. Marchant; Jun Lim; Gavan P. McNally; Erin J. Campbell; Gabrielle D. Gibson; John M. Power; Philip Jean-Richard-dit-Bressel; E. Zayra Millan; Asheeta A. Prasad; Yu Liu; Joanna Oi-Yue Yau;pmid: 29656870
Contexts exert bi-directional control over relapse to drug seeking. Contexts associated with drug self-administration promote relapse, whereas contexts associated with the absence of self-administration protect against relapse. The nucleus accumbens shell (AcbSh) is a key brain region determining these roles of context. However, the specific cell types, and projections, by which AcbSh serves these dual roles are unknown. Here, we show that contextual control over relapse and abstinence is embedded within distinct output circuits of dopamine 1 receptor (Drd1) expressing AcbSh neurons. We report anatomical and functional segregation of Drd1 AcbSh output pathways during context-induced reinstatement and extinction of alcohol seeking. The AcbSh→ventral tegmental area (VTA) pathway promotes relapse via projections to VTA Gad1 neurons. The AcbSh→lateral hypothalamus (LH) pathway promotes extinction via projections to LH Gad1 neurons. Targeting these opposing AcbSh circuit contributions may reduce propensity to relapse to, and promote abstinence from, drug use.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuron.2018.03.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuron.2018.03.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Society for Neuroscience Funded by:ARC | Discovery Early Career Re..., NHMRC | Mapping and manipulating ..., NHMRC | Brain circuits promoting ...ARC| Discovery Early Career Researcher Award - Grant ID: DE170100509 ,NHMRC| Mapping and manipulating circuits for relapse and abstinence ,NHMRC| Brain circuits promoting abstinence and preventing relapse to alcohol seekingAsheeta A. Prasad; Caroline Xie; Chanchanok Chaichim; Jennifer H. Nguyen; Hannah E. McClusky; Simon Killcross; John M. Power; Gavan P. McNally;The ventral pallidum (VP) is a key node in the neural circuits controlling relapse to drug seeking. How this role relates to different VP cell types and their projections is poorly understood. Using male rats, we show how different forms of relapse to alcohol-seeking are assembled from VP cell types and their projections to lateral hypothalamus (LH) and ventral tegmental area (VTA). Using RNAScopein situhybridization to characterize activity of different VP cell types during relapse to alcohol-seeking provoked by renewal (context-induced reinstatement), we found that VP Gad1 and parvalbumin (PV), but not vGlut2, neurons show relapse-associated changes in c-Fos expression. Next, we used retrograde tracing, chemogenetic, and electrophysiological approaches to study the roles of VPGad1and VPPVneurons in relapse. We show that VPGad1neurons contribute to contextual control over relapse (renewal), but not to relapse during reacquisition, via projections to LH, where they converge with ventral striatal inputs onto LHGad1neurons. This convergence of striatopallidal inputs at the level of individual LHGad1neurons may be critical to balancing propensity for relapse versus abstinence. In contrast, VPPVneurons contribute to relapse during both renewal and reacquisition via projections to VTA. These findings identify a double dissociation in the roles for different VP cell types and their projections in relapse. VPGad1neurons control relapse during renewal via projections to LH. VPPVneurons control relapse during both renewal and reacquisition via projections to VTA. Targeting these different pathways may provide tailored interventions for different forms of relapse.SIGNIFICANCE STATEMENTRelapse to drug or reward seeking after a period of extinction or abstinence remains a key impediment to successful treatment. The ventral pallidum, located in the ventral basal ganglia, has long been recognized as an obligatory node in a 'final common pathway' for relapse. Yet how this role relates to the considerable VP cellular and circuit heterogeneity is not well understood. We studied the cellular and circuit architecture for VP in relapse control. We show that different forms of relapse have complementary VP cellular and circuit architectures, raising the possibility that targeting these different neural architectures may provide tailored interventions for different forms of relapse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1523/jneurosci.0262-19.2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1523/jneurosci.0262-19.2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NHMRC | Brain circuits promoting ..., NHMRC | A memory retrieval - exti..., NHMRC | Unraveling the neural cir...NHMRC| Brain circuits promoting abstinence and preventing relapse to alcohol seeking ,NHMRC| A memory retrieval - extinction procedure to prevent relapse to drug seeking ,NHMRC| Unraveling the neural circuitry of context-induced relapse to alcohol seeking after punishment-imposed abstinenceSimon Killcross; Andrew J Lawrence; Nathan J. Marchant; Nathan J. Marchant; Jun Lim; Gavan P. McNally; Erin J. Campbell; Gabrielle D. Gibson; John M. Power; Philip Jean-Richard-dit-Bressel; E. Zayra Millan; Asheeta A. Prasad; Yu Liu; Joanna Oi-Yue Yau;pmid: 29656870
Contexts exert bi-directional control over relapse to drug seeking. Contexts associated with drug self-administration promote relapse, whereas contexts associated with the absence of self-administration protect against relapse. The nucleus accumbens shell (AcbSh) is a key brain region determining these roles of context. However, the specific cell types, and projections, by which AcbSh serves these dual roles are unknown. Here, we show that contextual control over relapse and abstinence is embedded within distinct output circuits of dopamine 1 receptor (Drd1) expressing AcbSh neurons. We report anatomical and functional segregation of Drd1 AcbSh output pathways during context-induced reinstatement and extinction of alcohol seeking. The AcbSh→ventral tegmental area (VTA) pathway promotes relapse via projections to VTA Gad1 neurons. The AcbSh→lateral hypothalamus (LH) pathway promotes extinction via projections to LH Gad1 neurons. Targeting these opposing AcbSh circuit contributions may reduce propensity to relapse to, and promote abstinence from, drug use.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuron.2018.03.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuron.2018.03.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu