- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | SMARTER TOGETHEREC| SMARTER TOGETHERAli Hainoun; Hans-Martin Neumann; Naomi Morishita-Steffen; Baptiste Mougeot; Étienne Vignali; Florian Mandel; Felix Hörmann; Sebastian Stortecky; Katharina Walter; Martin Kaltenhauser-Barth; Bojan Schnabl; Stephan Hartmann; Maxime Valentin; Bruno Gaiddon; Samuel Martin; Benoit Rozel;doi: 10.3390/en15196907
The Smarter Together project implemented in the three lighthouse cities (LHCs) of Lyon, Munich, and Vienna a set of co-created and integrated smart solutions for a better life in urban districts. The implemented solutions have been monitored using a novel integrated monitoring methodology (IMM) following a co-creation process involving key stakeholders of the LHCs. With focus on holistic building refurbishment and the integration of onsite renewable energy supply (RES), the three LHCs refurbished around 117,497 m2 of floor area and constructed 12,446 m2 of new floor area. They implemented around 833 kWp of PV, 35 kW of solar thermal and 13,122 kW of geothermal heating systems. Altogether, the realized solutions for low-energy districts in the three LHCs will annually save around 4000 MWh/a, generate 1145 MWh/a of RES and reduce around 1496 tCO2/a of CO2 emissions, corresponding to specific values of 37.6 kWh/m2.a and 11.9 kg-CO2/m2.a for final energy saving and CO2 emission reductions, respectively. KPI-based monitoring and evaluation of the implemented solutions provides qualitative and quantitative insight, experience and lessons learned to optimize the process of implementation and deployment of integrated solutions for holistic building refurbishment, and thus contribute to advancing sustainable urban transformation at the district level for both LHCs and FCs.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Funded by:EC | SMARTER TOGETHEREC| SMARTER TOGETHERMorishita-Steffen, Naomi; Alberola, Rémi; Mougeot, Baptiste; Vignali, Étienne; Wikström, Camilla; Montag, Uwe; Gastaud, Emmanuel; Lutz, Brigitte; Hartmann, Gerhard; Pfaffenbichler, Franz Xaver; Hainoun, Ali; Gaiddon, Bruno; Marvuglia, Antonino; Andreucci, Maria Beatrice;doi: 10.3390/en14041075
handle: 11573/1500141
In a context where digital giants are increasingly influencing the actions decided by public policies, smart data platforms are a tool for collecting a great deal of information on the territory and a means of producing effective public policies to meet contemporary challenges, improve the quality of the city, and create new services. Within the framework of the Smarter Together project, the cities of Lyon (France), Munich (Germany), and Vienna (Austria) have integrated this tool into their city’s metabolism and use it at different scales. Nevertheless, the principle remains the same: the collection (or even dissemination) of internal and external data to the administration will enable the communities, companies, not-for-profit organizations, and civic administrations to “measure” the city and identify areas for improvement in the territory. Furthermore, through open data logics, public authorities can encourage external partners to become actors in territorial action by using findings from the data to produce services that will contribute to the development of the territory and increase the quality of the city and its infrastructure. Nevertheless, based on data that is relatively complex to extract and process, public data platforms raise many legal, technical, economic, and social issues. The cities either avoided collecting personal data or when dealing with sensitive data, use anonymized aggregated data. Cocreation activities with municipal, commercial, civil society stakeholders, and citizens adopted the strategies and tools of the intelligent data platforms to develop new urban mobility and government informational services for both citizens and public authorities. The data platforms are evolving for transparent alignment with 2030 climate-neutrality objectives while municipalities strive for greater agility to respond to disruptive events like the COVID-19 pandemic.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1075/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/4/1075/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1075/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/4/1075/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | SMARTER TOGETHEREC| SMARTER TOGETHERAli Hainoun; Hans-Martin Neumann; Naomi Morishita-Steffen; Baptiste Mougeot; Étienne Vignali; Florian Mandel; Felix Hörmann; Sebastian Stortecky; Katharina Walter; Martin Kaltenhauser-Barth; Bojan Schnabl; Stephan Hartmann; Maxime Valentin; Bruno Gaiddon; Samuel Martin; Benoit Rozel;doi: 10.3390/en15196907
The Smarter Together project implemented in the three lighthouse cities (LHCs) of Lyon, Munich, and Vienna a set of co-created and integrated smart solutions for a better life in urban districts. The implemented solutions have been monitored using a novel integrated monitoring methodology (IMM) following a co-creation process involving key stakeholders of the LHCs. With focus on holistic building refurbishment and the integration of onsite renewable energy supply (RES), the three LHCs refurbished around 117,497 m2 of floor area and constructed 12,446 m2 of new floor area. They implemented around 833 kWp of PV, 35 kW of solar thermal and 13,122 kW of geothermal heating systems. Altogether, the realized solutions for low-energy districts in the three LHCs will annually save around 4000 MWh/a, generate 1145 MWh/a of RES and reduce around 1496 tCO2/a of CO2 emissions, corresponding to specific values of 37.6 kWh/m2.a and 11.9 kg-CO2/m2.a for final energy saving and CO2 emission reductions, respectively. KPI-based monitoring and evaluation of the implemented solutions provides qualitative and quantitative insight, experience and lessons learned to optimize the process of implementation and deployment of integrated solutions for holistic building refurbishment, and thus contribute to advancing sustainable urban transformation at the district level for both LHCs and FCs.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6907/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Funded by:EC | SMARTER TOGETHEREC| SMARTER TOGETHERMorishita-Steffen, Naomi; Alberola, Rémi; Mougeot, Baptiste; Vignali, Étienne; Wikström, Camilla; Montag, Uwe; Gastaud, Emmanuel; Lutz, Brigitte; Hartmann, Gerhard; Pfaffenbichler, Franz Xaver; Hainoun, Ali; Gaiddon, Bruno; Marvuglia, Antonino; Andreucci, Maria Beatrice;doi: 10.3390/en14041075
handle: 11573/1500141
In a context where digital giants are increasingly influencing the actions decided by public policies, smart data platforms are a tool for collecting a great deal of information on the territory and a means of producing effective public policies to meet contemporary challenges, improve the quality of the city, and create new services. Within the framework of the Smarter Together project, the cities of Lyon (France), Munich (Germany), and Vienna (Austria) have integrated this tool into their city’s metabolism and use it at different scales. Nevertheless, the principle remains the same: the collection (or even dissemination) of internal and external data to the administration will enable the communities, companies, not-for-profit organizations, and civic administrations to “measure” the city and identify areas for improvement in the territory. Furthermore, through open data logics, public authorities can encourage external partners to become actors in territorial action by using findings from the data to produce services that will contribute to the development of the territory and increase the quality of the city and its infrastructure. Nevertheless, based on data that is relatively complex to extract and process, public data platforms raise many legal, technical, economic, and social issues. The cities either avoided collecting personal data or when dealing with sensitive data, use anonymized aggregated data. Cocreation activities with municipal, commercial, civil society stakeholders, and citizens adopted the strategies and tools of the intelligent data platforms to develop new urban mobility and government informational services for both citizens and public authorities. The data platforms are evolving for transparent alignment with 2030 climate-neutrality objectives while municipalities strive for greater agility to respond to disruptive events like the COVID-19 pandemic.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1075/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/4/1075/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1075/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/14/4/1075/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu